Development of Gene-based Markers for the Allelic Selection of the Restorer-of-fertility Gene, Rfo, in Radish (Raphanus sativus)

  • Kim, Sunggil (Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University) ;
  • Lim, Heerae (Biotech Application Team, Dongbu Advanced Research Institute, Dongbu HiTek Co., Ltd.) ;
  • Cho, Kang-Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Pue Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Suhyung (National Institute of Horticultural & Herbal Science, RDA) ;
  • Sung, Soon-Kee (Biotech Application Team, Dongbu Advanced Research Institute, Dongbu HiTek Co., Ltd.) ;
  • Oh, Daegeun (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Ki-Taek (National Institute of Horticultural & Herbal Science, RDA)
  • 투고 : 2009.08.12
  • 발행 : 20090900

초록

Cytoplasmic male sterility (CMS) and fertility restoration have been utilized as valuable tools for $F_1$-hybrid seed production in many crops despite laborious breeding processes. Molecular markers for the selection of CMS-related genes help reduce the expenses and breeding times. A previously reported genomic region containing the Ppr-B gene, which is responsible for restoration of fertility and corresponds to the Rfo locus, was used to develop gene-based or so-called "functional" markers for allelic selection of the restorer-of-fertility gene (Rfo) in $F_1$-hybrid breeding of radish (Raphanus sativus L.) Polymorphic sequences among Rfo alleles of diverse breeding lines of radish were examined by sequencing the Ppr-B alleles. However, presence of Ppr-B homolog, designated as Ppr-D, interferes on specific PCR amplification of Ppr-B in certain breeding lines. The organization of Ppr-D, resolved by genome walking, revealed extended homology with Ppr-B even in the promoter region. Interestingly, PCR amplification of Ppr-D was repeatedly unsuccessful in certain breeding lines implying the lack of Ppr-D in these radishes. Ppr-B could only be successfully amplified for analysis through designing primers based on the sequences unique to Ppr-B that exclude interference from Ppr-D gene. Four variants of Rfo alleles were identified from 20 breeding lines. A combination of three molecular markers was developed in order to genotype the Rfo locus based on polymorphisms among four different variants. These markers will be useful in facilitating $F_1$-hybrid cultivar development in radish.

키워드

과제정보

연구 과제 주관 기관 : Rural Development Administration

참고문헌

  1. Albert B, Godelle B, Gouyon, PH. 1998. Evolution of the plant mitochondrial genome: dynamics of duplication and deletion of sequences. J. Mol. Evol. 46:155-158 https://doi.org/10.1007/PL00006290
  2. Andersen JR, Lübberstedt T. 2003. Functional markers in plants. Trends Plant Sci. 8:554-560 https://doi.org/10.1016/j.tplants.2003.09.010
  3. Bentolila S, Alfonso AA, Hanson MR. 2002. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. 99:10887-10892 https://doi.org/10.1073/pnas.102301599
  4. Bonhomme S, Budar F, Ferault M, Pelletier G. 1991. A 2.5 kb Nco I fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids. Curr. Genet. 19:121-127 https://doi.org/10.1007/BF00326293
  5. Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. 2003. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 35:262-272 https://doi.org/10.1046/j.1365-313X.2003.01799.x
  6. Budar F, Touzet P, De Paepe R. 2003. The nucleomitochondrial conflict in cytoplasmic male sterilities revised. Genetica 117:3-16 https://doi.org/10.1023/A:1022381016145
  7. Cui X, Wise RP, Schnable PS. 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334-1336 https://doi.org/10.1126/science.272.5266.1334
  8. Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung WY, Landry BS, Renard M. 1998. Characterization of the radish introgression carrying the Rfo restorer gene for the ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor. Appl. Genet. 97:129-134 https://doi.org/10.1007/s001220050876
  9. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A. 2003. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 4:588-594 https://doi.org/10.1038/sj.embor.embor848
  10. Fauron CMR, Moore B, Casper M. 1995. Maize as a model of higher plant mitochondrial genome plasticity. Plant Sci. 112:11-32 https://doi.org/10.1016/0168-9452(95)04243-N
  11. Gothandam KM, Kim E, Cho H, Chung Y. 2005. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol. Biol. 58:421-433 https://doi.org/10.1007/s11103-005-5702-5
  12. Grelon M, Budar F, Bonhomme S, Pelletier G. 1994. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol. Gen. Genet. 243:540-547 https://doi.org/10.1007/BF00284202
  13. Handa H. 2003. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res. 31:5907-5916 https://doi.org/10.1093/nar/gkg795
  14. Hanson MR, Bentolila S. 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154-S169 https://doi.org/10.1105/tpc.015966
  15. Kadowaki K, Suzuki T, Kazama S. 1990. A chimeric gene containing the 5' portion of atp6 is associated with cytoplasmic male-sterility of rice. Mol. Genet. Genomics 224:10-16 https://doi.org/10.1007/BF00259445
  16. Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J. 2003. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J. 34:407-415 https://doi.org/10.1046/j.1365-313X.2003.01735.x
  17. Koizuka N, Imai R, Iwabuchi M, Sakai T, Imamura J. 2000. Genetic analysis of fertility restoration and accumulation of ORF125 mitochondrial protein in the kosena radish (Raphanus sativus cv. Kosena) and a Brassica napus restorer line. Theor. Appl. Genet. 100:949-955 https://doi.org/10.1007/s001220051375
  18. Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. 2004. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J. 37:315-325 https://doi.org/10.1046/j.1365-313X.2003.01961.x
  19. Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T. 2000. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNAcys (GCA). Nucleic Acids Res. 28:2571-2576 https://doi.org/10.1093/nar/28.13.2571
  20. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette M, Mireau H, Peeters N, Renou J, Szurek B, Taconnat L, Small I. 2004. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089-2103 https://doi.org/10.1105/tpc.104.022236
  21. Makaroff CA, Palmer JD. 1987. Extensive mitochondrial specific transcription of the Brassica campestris mitochondrial genome. Nucleic Acids Res. 15:5141-5156 https://doi.org/10.1093/nar/15.13.5141
  22. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834 https://doi.org/10.1105/tpc.009308
  23. Nieuwhof M. 1990. Cytoplasmic-genetic male sterility in radish (Raphanus sativus L.). Identification of maintainers, inheritance of male sterility and effect of environmental factors. Euphytica 47:171-177 https://doi.org/10.1007/BF00038833
  24. Nivison HT, Hanson MR. 1989. Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia. Plant Cell 1:1121-1130 https://doi.org/10.1105/tpc.1.11.1121
  25. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Kirai A, Kadowaki K. 2002. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics 268:434-445 https://doi.org/10.1007/s00438-002-0767-1
  26. Ogura H. 1968. Studies on the new male sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agr Kagoshima Univ 6:39-78
  27. Oldenburg DJ, Bendich AJ. 2001. Mitochondrial DNA from the Liverwort Marchantia polymorpha: Circularly permuted linear molecules, head-to-tail concatemers, and a 5' protein. J. Mol. Biol. 310:549-562 https://doi.org/10.1006/jmbi.2001.4783
  28. Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle P, Renard M. 1983. Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol. Gen. Genet 191:244-250 https://doi.org/10.1007/BF00334821
  29. Schnable PS, Wise RP. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3:175-180 https://doi.org/10.1016/S1360-1385(98)01235-7
  30. Small ID, Peeters N. 2000. The PPR motif- a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25:45-47 https://doi.org/10.1016/S0968-0004(99)01520-0
  31. Unseld M, Marienfeld JR, Brandt P, Brennicke A. 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature genet. 15:57-61 https://doi.org/10.1038/ng0197-57
  32. Yamagishi H, Terachi T. 1994. Molecular and biological studies on male-sterile cytoplasm in the Cruciferae. I. The origin and distribution of Ogura male-sterile cytoplasm in Japanese wild radishes (Raphanus sativus L.) revealed by PCR-aided assay of their mitochondrial DNAs. Theor. Appl. Genet. 87:996-1000 https://doi.org/10.1007/BF00225794