Several Functional Properties of Freeze-dried Powder of Pre-concentrated Aloe vera gel

농축 전처리된 Aloe vera gel의 동결건조분말의 기능성

  • Lee, Nam Jae (Department of Food Science and Technology, Dongguk University) ;
  • Lee, Seung Ju (Department of Food Science and Technology, Dongguk University)
  • Received : 2009.04.09
  • Accepted : 2009.08.04
  • Published : 2009.08.31

Abstract

The several functional properties of freeze-dried powder of Aloe vera gel was examined as influenced by pre-concentration degrees of the gel solution. As a pre-treatment prior to freeze drying, the gel solution was vacuum-concentrated by three levels (unit: g-water/g-solids) - high (H), 76; medium (M), 119; low (L), 159. In FT-IR spectra, the sample H showed the highest absorbance in the range of 1600-1550 $cm^{-1}$ and 1450-1400 $cm^{-1}$, which corresponded to level of the acetyl group in glucomannan. The sample H of freeze-dried powder was the highest in polysaccharide content, jack bean urease inhibition rate, and FAC (fat adsorption capacity). It could be inferred that the sample H had an effect on Helicobacter pylori inhibition and fat adsorption suppression according to urease inhibition rate and FAC, respectively.

Aloe gel의 동결건조에 농축도가 서로 다른 액상 시료를 사용하였을 때 건조분말의 기능성 변화를 비교분석하였다. Aloe의 많은 기능성 중에서 유효 다당류의 농도, 기능성 작용기에 대한 FT-IR 특성, Jack bean urease 저해 효과, FAC(fat adsorption capacity)를 대상으로 하였다. 농축도가 높은 경우에 유효 다당류의 농도, urease 저해 효과, FAC 모두 상대적으로 크게 나타났다. FT-IR의 분석에서는 농축도가 높은 경우에 glucomannan의 acetyl 기에 대한 spectrum 영역인 1600-1550 $cm^{-1}$와 1450-1400 $cm^{-1}$에서 흡광도가 크게 관찰되었다. 결과적으로 Aloe gel의 동결건조시 전처리과정인 농축 공정에서는 농축도가 높을수록 유효다당류의 양과 acetyl기 함량의 수준이 크며, 간접적으로 urease 저해 효과에 따른 Helicobacter pylori의 억제 및 FAC의 증가 효과를 보였다.

Keywords

Acknowledgement

Supported by : (주)김정문알로에

References

  1. Aronson CL, Beloskur D. Frampton IS, Mckie J, Burland B.2005. The effect of macromolecular architecture on functionalgroup accessibility: hydrogen bonding in blends containing phenolicphotoresist polymers. Polym. bull. 53: 413-424 https://doi.org/10.1007/s00289-005-0347-8
  2. Bozzi A, Perrin C, Austin S, Vera FA. 2007. Quality and authenticityof commercial Aloe vera gel powders. Food Chem. 103:22-30 https://doi.org/10.1016/j.foodchem.2006.05.061
  3. Cesareo SD, Langton SR. 1992. Kinetic properties of Helicobacterpylori urease compared with Jack bean urease. FEMS Microbiol.Lett. 78: 15-21
  4. Eberendu AR, Luta G, Edwards JA, Mcanalley BH, Davis B.2005. Quantitative colorimetric analysis of Aloe polysaccharidesas a measure of Aloe vera quality in commercial products. J.AOAC Int. 88: 684-691
  5. Femenia A, Garcia-Pascual P, Simal S, Rossello C. 2003. Effectsof heat treatment and dehydration on bioactive polysaccharideacemannan and cell wall polymers from Aloe barbadensisMiller. Carbohyd. Polym. 51: 397-405 https://doi.org/10.1016/S0144-8617(02)00209-6
  6. Grindlay D, Reynolds T. 1986. The Aloe vera phenomenon: areview of the properties and modern uses of the leaf parenchymagel. J. Ethnopharmacol. 16: 117-151 https://doi.org/10.1016/0378-8741(86)90085-1
  7. Kim SA. 2006. Physical and Functional Properties of Aloe veraGel Concentrated by DIS Process. MS thesis, KangwonNational University
  8. Kwaambwa HM, Goodwin JW, Hughes RW, Reynolds PA. 2007.Viscosity, molecular weight and concentration relationships at298 K of low molecular weight cis-polyisoprene in a goodsolvent. Colloid Surface A. 294: 14-19 https://doi.org/10.1016/j.colsurfa.2006.07.041
  9. Lee MS, Choi HS. 1995. Volatile flavor components of Commelinacommunis L. as influenced by drying methods. Korean JFood Sci. Technol. 27: 380-386
  10. Lee NJ, Lee SJ. 2009. Physical properties of freeze-dried powderof Aloe vera gel with respect to the concentrating degree as pretreatment.Korean J. Food Sci. Technol. 41: 32-36
  11. Litvin S, Mannheim CH, Miltz J. 1998. Dehydration of carrots bya combination of freeze drying, microwave heating and air orvacuum drying. J. Food Eng. 36: 103-111 https://doi.org/10.1016/S0260-8774(98)00054-5
  12. Manna S, McAnalley BH. 1993. Determination of the position ofthe o-acetyl group in a β-(1→4)-mannan(acemannan) from Aloebarbadensis Miller. Carbohyd. Res. 241: 317-319 https://doi.org/10.1016/0008-6215(93)80122-U
  13. Matsubara S, Shibata H, Ishikawa F, Yokokura T, Takahashi M,Sugimura T, Wakabayashi K. 2003. Suppression of Helicobacterpylori-induced gastritis by green tea extract in Mongolian gerbils.Biochem. Bioph. Res. Co. 310: 715-719 https://doi.org/10.1016/j.bbrc.2003.09.066
  14. Mobley HLT, Jones BD, Jerse AE. 1986. Cloning of urease genesequences from Providencia stuartii. Infect. Immun. 54: 161-169
  15. Murafuji T, Azuma T, Miyoshi Y, Ishibashi M, Rohaman AF,Migita K, Sugihara Y, Mikata Y. 2006. Inhibition of jack beanurease by organobismuth compounds. Bioorg. Med. Chem. Lett.16: 1510-1513 https://doi.org/10.1016/j.bmcl.2005.12.034
  16. Nakagawa K, Hottot A, Vessot S, Andrieu J. 2007. Modeling offreezing step during freeze-drying of drugs in vials. AIChE J.53: 1362-1372 https://doi.org/10.1002/aic.11147
  17. Popov VM, Wang C, Shirley AS, Rosenberg A, Li S, NevalainenM, Fu M, Pestell RG. 2007. The functional significance ofnuclear receptor acetylation. Steroids 72: 221-230 https://doi.org/10.1016/j.steroids.2006.12.001
  18. Reynolds T, Dweck AC. 1999. Aloe vera leaf gel: a reviewupdate. J. Ethnopharmacol. 68: 3-37 https://doi.org/10.1016/S0378-8741(99)00085-9
  19. Simal S, Femenia A, Llull P, Rossello C. 2000. Dehydration ofAloe vera: simulation of drying curves and evaluation of functionalproperties. J. Food Eng. 43: 109-114 https://doi.org/10.1016/S0260-8774(99)00139-9
  20. Tang CH. 2007. Functional properties and in vitro digestibility ofbuckwheat protein products: Influence of processing. J. FoodEng. 82: 568-576 https://doi.org/10.1016/j.jfoodeng.2007.01.029
  21. Xu X, Li B, Kennedy JF, Xie BJ, Huang M. 2007. Characterizationof konjac glucomannan-gellan gum blend films and theirsuitability for release of nisin incorporated therein. Carbohyd.Polym. 70: 192-197 https://doi.org/10.1016/j.carbpol.2007.03.017
  22. Zhang SW, He R, Wang D, Fan Q. 2001. Abrasive erosion ofpolyurethane. J. Mater. Sci. 36: 5037-5043 https://doi.org/10.1023/A:1011814506377