The Apple Rootstock Transgenic M.26 (Malus pumila) with Enhanced Rooting Ability

발근력이 향상된 사과 대목 M.26 형질전환체

  • Kim, Jeong-Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kwon, Soon-Il (National Institute of Horticultural & Herbal Science, RDA) ;
  • Shin, Il Sheob (National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Kang-Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Heo, Seong (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Hyun Ran (National Institute of Horticultural & Herbal Science, RDA)
  • 김정희 (농촌진흥청 국립원예특작과학원) ;
  • 권순일 (농촌진흥청 국립원예특작과학원) ;
  • 신일섭 (농촌진흥청 국립원예특작과학원) ;
  • 조강희 (농촌진흥청 국립원예특작과학원) ;
  • 허성 (농촌진흥청 국립원예특작과학원) ;
  • 김현란 (농촌진흥청 국립원예특작과학원)
  • Received : 2009.12.07
  • Published : 20091200

Abstract

The apple rootstock M.26 (Malus pumila) is very popular apple rootstock with semi-dwarf habit and the trees on M.26 produce high quality fruit at a young age. Since it is prone to poor prop ability to soil, however, young trees require staking in windy locations. The rolC gene was introduced into M.26 by Agrobacterium tumefaciens LBA4404 harboring pBI121 to obtain its transformants with dwarfism and enhanced rooting ability. One regenerated transgenic line was confirmed by polymerase chain reaction (PCR) analysis and Southern blot analysis of genomic DNA for the existence of rolC gene. The characteristics of transgenic line in vitro were not significantly different from non-transgenic line except for the active root formation and lateral root number. The rolC transgenic line showed reduced stem length and increased root number in vitro. Rooting ability was examined in the isolated greenhouse after mound layering. Compared to non-transgenic M.26, rolC transgenic line showed significantly higher rooting ability. The transgenic line did not show any other observable variation in shoot phenotype compared with non-transgenic line excepting increased branching

사과 대목 M.26은 준왜성대목으로 뿌리의 토양 지지력이 약해 지주 재배를 해야 하는 단점이 있다. 발근력이 향상된 M.26 왜성 대목 형질전환체를 육성하기 위하여 rolC 유전자 전환을 실시하였다. 항생제가 첨가된 재분화 선발 배지에서 재분화된 M.26 신초 1개체의 genomic DNA를 추출하여 PCR과 Southern 분석을 실시한 결과 유전자의 도입을 확인할 수 있었다. 유전자 도입이 확인된 형질전환체의 기내 발근 상태에서의 식물체 특성을 조사한 결과 대조구에 비해 신초 길이가 감소되었고 발근력이 증가된 것을 확인할 수 있었다. 격리 온실에서 생육시켰을 때 rolC 유전자 고유 특성 중 하나인 분지가 발생되었고, 실생 대목에 접목한 후 묻어떼기를 통한 발근력을 조사한 결과 발근이 현저히 향상되었음을 확인할 수 있었다. 이상에서 확인된 rolC 유전자의 도입에 의한 M.26 사과 대목의 발근력 향상과 동시에 왜화 효과를 검정하기 위해서는 실제 품종과의 접목을 통해서 기존 대목과의 왜화도 차이를 비교할 필요가 있다고 판단되었다.

Keywords

References

  1. Bolar JP, Brown SK, Norelli JL, Aldwinckle HS. 1999. Factors affecting the transformation of ‘Marshall McIntosh’ apple by Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 55:31-38 https://doi.org/10.1023/A:1026414031217
  2. Capone I, Spano L, Cardarelli M, Bellincampi D, Petit A, Costantino P. 1989. Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol. 13(1):43-52 https://doi.org/10.1007/BF00027334
  3. Fladung M. 1990. Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and characterization of transgenic plants. Plant Breed. 104:295-304 https://doi.org/10.1111/j.1439-0523.1990.tb00439.x
  4. Gardner N, Melberg T, George M, Smith AG. 2006. Differential expression of rolC results in unique plant phenotypes. J. Amer. Soc. Hort. Sci. 131(1):82-88
  5. Han SG, Yoon TM. 2004. Figure of freezing injury in apple trees on M.9 rootstock. Kor. J. Hort. Sci. Technol. 22(Suppl.I):36
  6. Hildebrand EM. 1934. Life history of the hairy root organism in relation to its pathogenesis on nursery apple trees. J. Agric. Res. 48:857-885
  7. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179-180 https://doi.org/10.1038/303179a0
  8. Igarashi M, Ogasawara H, Hatsuyama Y, Saito A, Suzuki M. 2002. Introduction of rolC into Marubakaidou (Malus prunifolia Borkh. var. ringo Asami Mo 84-A) apple rootstock via Agrobacterium tumefaciens. Plant Science 163:463-473 https://doi.org/10.1016/S0168-9452(02)00145-0
  9. Kaneyoshi J, Kobayashi S. 1999. Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. J. Jpn. Soc. Hort. Sci. 68:734-738 https://doi.org/10.2503/jjshs.68.734
  10. Kim JH, Kim KO, Woo JG, Kim D, Kim CK. 2008. Introduction of CAX1 into Korean bred 'Gamhong' apple via Agrobacterium tumefaciens. Kor. J. Hort. Sci. Technol. 26(Suppl.II):36-40
  11. Maheswaran G, Welander M, Hutchinson JF, Graham MW, Richards D. 1992. Transformation of apple rootstock M26 with Agrobacterium tumefaciens. J. Plant Physiol. 139:560-568 https://doi.org/10.1016/S0176-1617(11)80370-6
  12. Mitiouchkina TY, Dolgov SV. 2000. Modification of chrysanthemum flower and plant architecture by rolC gene form Agrobacterium rhizogenes introduction. Acta Hort. 508:163-169
  13. Schmülling T, Schell J, Spena A. 1988. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 7:2621-2629
  14. Sedira M, Holefors A, Welander M. 2001. Protocol for transformation of the apple rootstock Jork 9 with the rolB gene and its influence on rooting. Plant Cell Rep. 20:517-524 https://doi.org/10.1007/s002990100357
  15. Shin YU. 1997. 사과 대목 및 품종의 선택 방향. Horticulture Abstracts 15(1):23-24
  16. Sohn JK, Kim SH, Kim KM. 1994. Transformation of Brassica napus using Agrobacterium. Korean J. Breed. 26(1):46-52
  17. Song KJ, Ahn SY, Hwang JH, Shin YU, Park SW, An G. 2000. Agrobacterium-mediated transformation of 'McIntosh Wijcik' apple. J. Kor. Soc. Hort. Sci. 41:541-544
  18. Spena A, Schmülling T, Koncz C, Schell JS. 1987. Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J. 6:3891-3899
  19. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW. 1985. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 164:33-44
  20. Winefield C, Lewis D, Arathoon S, Deroles S. 1999. Alterations of Petunia plant form through the introduction of the rolC gene from Agrobacterium rhizogenes. Mol. Breed. 5:543-551 https://doi.org/10.1023/A:1009638401275
  21. Yamashita H, Daimon H, Akasaka Y, Masuda T. 2004. Plant regeneration from hairy roots of apple rootstock, Malus prunifolia Borkh. var. ringo Asami, Strain Nagano No. 1, transformed by Agrobacterium rhizogenes. J. Japan. Soc. Hort. Sci. 73(6):505-510 https://doi.org/10.2503/jjshs.73.505
  22. Zhu L-H, Welander M. 2000. Adventitious shoot regeneration of two dwarfing pear rootstocks and the development of a transformation protocol. J. Hortic. Sci. Biotechnol. 75:745-752
  23. Zhu L-H, Li X-Y, Ahlman A, Welander M. 2003. The rooting ability of the dwarfing pear rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Science 165:829-835 https://doi.org/10.1016/S0168-9452(03)00279-6
  24. Zuker A, Tzfira T, Scovel G, Ovadis M, Shklarman E, Itzhaki H, Vainstein A. 2001. rolC-transgenic carnation with improved agronomic traits: quantitative and qualitative analyses of greenhouse-grown plants. J. Am. Soc. Hort. Sci. 126:13-18