Analysis of Quantitative Trait Loci (QTL) Associated with the Gel Consistency in Rice

쌀의 호응집성에 대한 QTLs 분석

  • Kim, Tae-Heon (Department of Agronomy, Kyungpook National University) ;
  • Sohn, Jae-Keun (Department of Agronomy, Kyungpook National University) ;
  • Kim, Kyung-Min (School of Applied Ecological Resources, Kyungpook National University)
  • 김태헌 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 손재근 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 김경민 (경북대학교 생태환경대학 생태자원응용학부)
  • Received : 2009.12.02
  • Published : 20091200

Abstract

The purpose of this study was to identify the quantitative trait loci (QTL) associated with gel consistency (GC), and to evaluate the relationships between GC and physico-chemical properties related to eating quality in rice. A total of 120 doubled haploid (DH) lines derived from a cross between 'Samgang' and 'Nagdong' and 26 varieties were used for this study. The 120 DH lines were divided into four groups, soft (61~100 mm), medium (41~60 mm), hard (26~40 mm) and whole population, according to the gel length. A negative correlation between GC and amylose content was observed only in the soft group. The GC negatively correlated with lipid content in the medium, and the whole population, but positively correlated with lipid content in the soft group. The positive correlation between GC and protein content was observed in the soft group, while negative correlations were observed in the medium group and the whole population. Two significant QTLs regarding GC were detected on chromosomes 4 and 11. They collectively explained 23% of phenotypic variation with LOD score of 3.1 and 2.9, respectively. The DNA markers of S4026 and RM287 were tightly linked to GC in the DH population and 26 varieties, respectively.

본 연구에서는 자포니카형인 '낙동'과 통일형인 '삼강' 조합의 DH 집단을 이용하여 식미를 결정하는 특성 중 하나인 호응집성과 미립의 이화학적 특성인 천립중, 장폭비, 아밀로즈 함량, 단백질 함량, 지질 함량 및 전분 함량 간 상관관계를 검정하였다. 또한 호응집성의 QTL을 분석하고, 각 QTL에 속하는 DNA marker와 DH 집단의 호응집성 및 품종별 호응집성 간 관계를 분석하였다. '삼강/낙동' DH 집단의 호응집성 범위는 35~94 mm로 비교적 넓은 범위의 변이를 나타내었고 양친의 범위를 벗어나는 초월분리현상을 나타내었다. '삼강/낙동' DH 집단에서 호응집성은 미립의 이화학적특성 중 아밀로즈 함량과는 연으로 분류된 계통에서만 부의 유의성 있는 상관관계를 나타내었고, 지질 함량과는 중 및 전체 계통에서는 부의 상관관계를 나타내었으나 연으로 분류된 계통과는 정의 상관관계를 나타내었다. 단백질 함량과는 연으로 분류된 계통과는 정의 상관관계, 중과 전체 계통에서는 부의 상관관계를 나타내었으며, 전분 함량에서는 연으로 분류된 계통에서만 호응집성과 부의 상관관계를 나타내었다. 호응집성과 연관된 QTL은 4번(qgc4)과 11번(qgc11) 염색체에서 탐색되었으며 LOD score는 각각 3.1, 2.9를 나타내었고 두 QTL의 설명 가능한 표현형 변이는 23%로 비교적 크게 작용하고 있었다. '삼강/낙동' DH 집단에서 gel의 길이가 긴 상위 10개 계통과 짧은 하위 10개 계통을 대상으로 QTL 연관 DNA marker와 호응집성간의 관계분석에서 S4026과 RM287은 gel의 길이와 연관성이 높은 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Bao JS, Sun M, Corke H. 2002. Analysis of genetic behavior of some starch properties in indica rice(Oryza sativa L.): thermal properties, gel texture, swelling volume. Theor Appl Genet 104:408-413 https://doi.org/10.1007/s001220100688
  2. Cagampang CB, Perez CM, Juliano BO. 1973. A gel consistency test for eating quality in rice. J Sci Food Agric. 24:1589-1594 https://doi.org/10.1002/jsfa.2740241214
  3. Chang TT, Li CC. 1991. Genetics and breeding. In: Luh BS (ed) Rice production, 2nd edn. Van Nostrand Reinhold, New York. pp. 23-101
  4. Chen D. H. and P. C. Ronald. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Molecular Biology Reporter 17:53-57 https://doi.org/10.1023/A:1007585532036
  5. Choi YH, Kim KH, Chio HC, Hwang HG, Kim YG, Kim KJ, Lee YT. 2006. Analysis of grain quality properties in Korea-bred japonica rice cultivar. Korean J. Crop Sci. 51(7):624-631
  6. Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang Qifa. 2005. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet 110:1445-1452 https://doi.org/10.1007/s00122-005-1975-y
  7. Gomez KA. 1979. Effect of environment on protein and amylose content of rice. Proceeding of the workshop on chemical aspects of rice grain quality. International Rice Research Institute. pp.59-68
  8. He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH. 1999. Genetic analysis of rice grain quality. Theor Appl Genet 98:502-508 https://doi.org/10.1007/s001220051098
  9. Heu MH, Moon HP. 1974, Basic studies for the breeding of high protein rice IV. Effect of short-day and hightemperature treatment on the amylose and crude protein content of rice. J. Korean Soc. Crop. Sci. 14:129-133
  10. Heu MH, Park SZ. 1976. Dosage effect of Wx allele on the amylase content of rice grain 1. Amylose content of hybrid seeds obtained from isogenic lines for glutinous and base color. Korea J. Breeding 8(1):38-54
  11. Juliano BO. 1971. A simplified assay for milled-rice amylose. Cereal Sci Today 16:334-360
  12. Juliano BO. 1972. Physico chemical properties of starch and protein in relation to grain quality and nutritional value of rice. In Rice Breeding. International Rice Research Institute. pp.389-405
  13. Juliano BO. 1985. Rice chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul
  14. Juliano B. O. 2003. Rice chemistry and quality. Philippine Rice research Institute. pp.215-220
  15. Lanceras JC, Huang ZL, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S. 2000. Mapping of genes for cooking and eating qualities in Thai Jasmine rice (KDML105). DNA Res 7:93-101 https://doi.org/10.1093/dnares/7.2.93
  16. Little RR, Hilder GB, Dawson EH. 1958. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem 35:111-126
  17. McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. 2003. Rice report on QTL nomenclature. Http://www.gramene.org/newsletters
  18. Perez CM, Juliano BO. 1979. Indicators of eating quality for non-waxy rices. Food chem. 4:185-195 https://doi.org/10.1016/0308-8146(79)90003-7
  19. Qin Y. 2007. Detection of main-effect QTLs. Epistasis and QTL × environmental interactions for grain quality in rice (Oriza sativa L.). Thesis for the degree of doctor of philosophy in Kyungpook national university. pp.1-101
  20. Roferos LT, Patindol JA, Juliano BO. 2000. Effect of degree of milling and protein content on milled rice gel consistency. PhilRice Tech Bull 5(1):64-66
  21. Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR. 2003. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433-1441 https://doi.org/10.1007/s00122-003-1376-z
  22. Tang SX, Khush GS, Juliano BO. 1991. Genetics of gel consistency in rice(Oryza sativa L.). J Genet 70:69-78 https://doi.org/10.1007/BF02927807
  23. Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang QF. 1999. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet 99:642-648 https://doi.org/10.1007/s001220051279
  24. Tian R, Jiang GH, Shen LH, Wang LQ, He YQ. 2005. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Molecular Breeding 15:117-124 https://doi.org/10.1007/s11032-004-3270-z
  25. Unnevehr LJ, Duff B, Juliano BO. 1992. Consumer demand for rice grain quality. International Rice Research Institute, Manila, and International Development Research Center, Ottawa
  26. Wang LQ, Liu WJ, Xu Y, He YQ, Luo LJ, Xing YZ, Xu CG, Zhang Qifa. 2007. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor Appl Genet 115:463-476 https://doi.org/10.1007/s00122-007-0580-7
  27. Wan XY, Wan JM, Su CC, Wang CM, Shen WB, Li JM, Wang HL, Jiang L, Liu SJ, Chen LM, Yasui H, Yoshimura A. 2004. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet 110:71-79 https://doi.org/10.1007/s00122-004-1744-3
  28. Zeng ZB. 1994. Precision mapping of quantitative trait loci. Genetics. 136:1457-1468