Method for Increasing the Yield of the Production of Carrot Single Cell by Using Gums

검류를 이용한 단세포 당근 제조 수율 향상 방법

  • Koh, Jong-Ho (Dept. of Bio-Food Technology, Korea Bio Polytechnic College) ;
  • Lee, Jungno (Dept. of Bio-Quality Control, Korea Bio Polytechnic College) ;
  • Kim, Hyuk-Hwa (Dept. of Bio-Food Technology, Korea Bio Polytechnic College)
  • 고종호 (한국폴리텍 바이오대학 바이오식품분석과) ;
  • 이정노 (한국폴리텍 바이오대학 바이오 품질관리과) ;
  • 김혁화 (한국폴리텍 바이오대학 바이오식품분석과)
  • Received : 2009.10.23
  • Accepted : 2009.11.06
  • Published : 2009.11.30

Abstract

In this study, the effects of gums (guar gum, xanthan gum, locust beam gum) on the activity of polygalacturonase(PGase) were examined. PGase activity was assayed by measuring the release of reducing groups from polygalacturonic acid. Guar gum, xanthan gum and locust bean gum were capable of increasing the catalytic activity of the PGase by 105%, 87% and 90%, respectively. Carrot was macerated by Macerozyme R-200 with gums and the yield of the maceration reaction for the production of carrot single cells was increased up to 13% in the presence of guar gum. This suggested that gums stated above can be used as good enhancers not only for the catalytic activity of the PGase but also for the production of carrot single cell.

본 연구에서는 효소의 활성을 증진시킬 수 있는 새로운 방법의 개발을 위하여 정제된 polygalacturonase(PGase)에 guar gum, xanthan gum, locust bean gum 등과 같은 교질물질을 첨가함으로써 효소의 활성을 특이적으로 향상시킬수 있는 방법 조사하였다. 정제된 PGase를 0.2%의 상술한 교질물질을 함유하는 동일한 완충용액에 잘 혼합시켜 30$^{\circ}C$ 에서 배양하여 상대활성을 구한 결과, guar gum 첨가 시는 PGase의 상대활성이 105%가 증가 되었으며, xanthan gum 첨가 시는 87%, locust bean gum 첨가 시는 90%가 증가되어 상술한 교질물질들이 효소의 활성 촉진제로서의 기능이 있음을 확인할 수 있었다. Guar gum 처리에 의해 당근 단세포 생성 반응을 수행한 결과 모든 반응시간에서 guar gum을 가했을 때가 PGase만을 가하여 단세포화 반응을 수행한 경우 보다 높은 수율을 보였으며, 단세포화 반응 2시간 경과 후에 대조군 대비 13%의 가장 높은 수율 향상을 보였다. 이상의 결과에서 PGase에 guar gum, xanthan gum, locust bean gum 등과 같은 교질물질을 첨가함으로써 효소의 활성을 특이적으로 향상시킬 수 있으며, 이를 이용한 단세포 당근의 제조에 있어서 효소반응의 수율 증진을 위한 방법으로 활용될 수 있음을 확인하였다.

Keywords

References

  1. Call HP, Waler J, Emeis CC. 1985. Maceration activity of an endopolygalacturonasefrom Candida macedoniensis. J. Food Biochem.9: 325-348 https://doi.org/10.1111/j.1745-4514.1985.tb00356.x
  2. Chang BS., Mahonney RR. 1995. Enzyme thermostabilization bybovine serum alumin and other proteins. Biotechnol. Appl.Biochem. 22: 203-214
  3. Gainvors A, Frezier V, Lemaresquire H, Lequart C, Aigle M, BelbarbiA. 1994. Detection of polygalacturonase, pectin-lyase and pectinesterase activities in a Saccharomyces cerevisiae strain. Yeast 10:1311-1319 https://doi.org/10.1002/yea.320101008
  4. Gomez-Ruiz L, Garcia-Garibay M, Barana E. 1988. Utilization ofendo-polygalacturonase from Kluyveromyces fragilis in theclarification of apple juice. J. Food Sci. 53: 1236-1240 https://doi.org/10.1111/j.1365-2621.1988.tb13575.x
  5. Honda S, Nishimura Y, Takahashi M, Chiba H, Kakehi K. 1982. Amanual method for the spectrophotometric determination ofreducing carbohydrates with 2-cyanoacetamide. Anal. Biochem. 119:194-199 https://doi.org/10.1016/0003-2697(82)90685-6
  6. Iguchi K, Kishida M, Sakai T. 1996. Purification and characterizationof three extra cellular protopectinases with polygalacturonaseactivity from Trichosporon penicillatum. Biosci. Biotechnol.Biochem. 60: 603-667 https://doi.org/10.1271/bbb.60.603
  7. Lim JY, Yamasaki Y, Ozawa J. 1980. Multiple forms of endopoly galacturonasefrom Saccharomyces fragilis. Agric. Biol. Chem.44: 473- 480 https://doi.org/10.1271/bbb1961.44.473
  8. Maldonado MC, Saad AM. 1998. Production of pectinesterase andpolygalacturonase by Aspergillus niger in submerged and solid statesystems. J. Ind. Microbiol. Biotechnol. 20: 34-38 https://doi.org/10.1038/sj.jim.2900470
  9. Martel MB, Letoublon R, Fevre M. 1998. Purification andcharacterization of two endopolygalacturonases secreted during theearly stages of the saprophytic growth of Sclerotinia scerotiorum.PFEMS Microbiol. Lett. 158: 133-138 https://doi.org/10.1111/j.1574-6968.1998.tb12812.x
  10. Moreau A, Shareck F, Kluepfel D, Morosoli R. 1994. Increase oncatalytic activity and thermostability of the xylanase A ofStreptomyces lividans 1362 by site-specific mutagenesis. Enz.Microb. Technol. 16: 420-424 https://doi.org/10.1016/0141-0229(94)90158-9
  11. Mozhaev VV, Melik-Nuvarov NS, Levitsky VY, Siksnis VA, MartnekK. 1992. High stability to irreversible inactivation at elevatedtemperatures of enzymes covalently modified by hydrophilicreagent. Biotechnol. Bioeng. 40: 650-662 https://doi.org/10.1002/bit.260400603
  12. Nakamura T, Hours RA, Sakai T. 1995. Enzymatic maceration ofvegetables with protopectinases. J. Food. Sci. 60: 468-472 https://doi.org/10.1111/j.1365-2621.1995.tb09805.x
  13. Park YK, Kang YH. 2004. Characteristics of suspension containingsingle cells from watermelon and muskmelon treated with cellseparation enzymes. Korean J. Food Sci. Technol. 36: 58-63
  14. Sakai T, Okushima M, Yoshidake S. 1984. Purification, crystallization,and some properties of endo-polygalacturonase from Kluyveromycesfragilis. Agric. Biol. Chem. 48: 1951-1961 https://doi.org/10.1271/bbb1961.48.1951
  15. Takasawa T, Sagisaka K, Yagi K, Uchiyama K, Aoki A, Takaoka K,Yamamoto K. 1997. Polygalacturonase isolated from the culture ofthe psychrophilic fungus Sclerotinia borealis. Can. J. Microbiol. 43:417-424 https://doi.org/10.1139/m97-059
  16. Tolbert NE. 1980. The Biochemistry of Plants. Vol. 1, Academic Press, New York, USA, pp. 101-116