Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC

고분자전해질 연료전지 분리판용 316L 스테인리스강의 표면특성에 미치는 질소 이온주입 효과

  • Kim, Min Uk (Division of Materials Science and Engineering, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Do-Hyang (Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University) ;
  • Han, Seung Hee (Division of Materials Science and Engineering, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Yu-Chan (Division of Materials Science and Engineering, Korea Institute of Science and Technology (KIST))
  • 김민욱 (한국과학기술연구원 재료기술연구본부) ;
  • 김도향 (연세대학교 신소재공학과 준결정재료연구단) ;
  • 한승희 (한국과학기술연구원 재료기술연구본부) ;
  • 김유찬 (한국과학기술연구원 재료기술연구본부)
  • Received : 2009.03.26
  • Published : 2009.11.25

Abstract

The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. S. J. C. Cleghorn, X. Ren, T. Espringer, M. S. Wilson, C. Zawodzinski, T. A. Azwodzinski, and S. Gottesfeld, Int. J. Hydrogen Energy 22, 1137 (1997) https://doi.org/10.1016/S0360-3199(97)00016-5
  2. J. Ihonen, F. Jaouen, G. Lindbergh, and G. Sndholm, Electrochimica Acta. 46, 2899 (2001) https://doi.org/10.1016/S0013-4686(01)00510-2
  3. J. R. Selman, 'Fuel Cells; Trends in Research and Application', Electric Power Research Institute, Calif. (1986)
  4. D. Linden, Handbook of Batteries and Fuel Cells, Mcgraw-HillNY (1984)
  5. D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, J. Appl. Electrochem. 30, 101 (2000) https://doi.org/10.1023/A:1003831406406
  6. T. M. Besmann, J. W. Klett, J. J. Henry, Jr., and E. L.-Curzio, J. Electrochem. Soc. 147, 4083 (2000) https://doi.org/10.1149/1.1394023
  7. P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, J. Power Sources 80, 235 (1999) https://doi.org/10.1016/S0378-7753(98)00264-X
  8. S. H. Lee, J. H. Kim, M. C. Kim, D. H. Chun, and D. M. Wee, J. Kor. Inst. Met. & Mater. 45, 44 (2007)
  9. Dae-Geun Nam, Surface Treatment of Stainless Steel for Polymer Electrolyte Membrane Fuel Cell Separator, p.43, Seoul National University (2007)
  10. H. Y. Lee, S. H. Lee, J. H. Kim, M. C. Kim, and D. M. Wee, J. Kor. Inst. Met. & Mater. 45, 602 (2007)
  11. H. Wang, M. A. Sweikart, and J. A. Turner, J. Power Sources. 115, 243 (2003) https://doi.org/10.1016/S0378-7753(03)00023-5
  12. H. Wang, M. P. Brady, G. Teeter, and J. A. Tumer, J. Power Sources. 138, 86 (2004) https://doi.org/10.1016/j.jpowsour.2004.06.067