Thermodynamic of Phosphorus in FeO-MnO-CaO-SiO2-MgOsatd. Slag Systems

FeO-MnO-CaO-SiO2-MgOsatd. 슬래그에서의 P의 열역학적 거동

  • Cho, Moon Kyung (Yonsei University, Department of Metallurgical Engineering) ;
  • Park, Kyung Ho (Korea Institute of Geoscience and Mineral Resources (KIGAM), Mineral Resources Research Division) ;
  • Min, Dong Joon (Yonsei University, Department of Metallurgical Engineering)
  • 조문경 (연세대학교 공과대학 신소재공학부 금속시스템공학과) ;
  • 박경호 (한국지질자원연구원 광물자원연구부) ;
  • 민동준 (연세대학교 공과대학 신소재공학부 금속시스템공학과)
  • Received : 2008.11.07
  • Published : 2009.03.25

Abstract

Recently, new extraction technology for manganese nodule has been developed as alternative noble metallic resources. It is important to understand thermodynamic behaviors of phosphorus in low basic slag system from the viewpoint of the refining processing optimization. Thermodynamic behaviors of phosphorus in the $FeO-MnO-CaO-SiO_2-MgO_{satd.}$ slag system were investigated at 1723 K with various oxygen potential and slag composition of low basicity. The experimental results for dependence of phosphorus on oxygen potential and slag basicity indicated that the dissolution mechanism of phosphorus into slag of low basicity could be derived as follows; $[P]+5/4O_2+(O^{2-})=({PO_{3.5}}^{2-})$ Present experimental results implied that stability of phosphorus in slag would be depended on both of $O^{2-}$ (basicity) and content of $Ca^{2+}$ in molten slag. The thermodynamic effect of FeO, MnO and $Na_2O$ on low basicity on phosphate capacity was discussed.

Keywords

Acknowledgement

Supported by : 한국지질자원연구원

References

  1. R. Sridhar, W. E. Jones, and J. S. Warner, JOM 28, 32 (1976) https://doi.org/10.1007/BF03354284
  2. L. J. Szabo, United States Patent, 3, 17 (1983)
  3. Y. V. Swamy, A. K. Tripathy, D. N. Dey, and P. K. Jena, The Institution of Mining and Metallurgy, 104
  4. K. H. Park, J. Kor. Inst. Met. & Mater. 7, 339 (1994)
  5. N. Sano and W. K. Lu, Advanced Physical Chemistry for Process Metallurgy, Academic Press, New York, 51 (1997)
  6. K. Ito and N. Sano, Tetsu-to-Hagane 15, 142 (1983)
  7. H. Suito and R. Inoue, Transactions ISIJ 24, 47 (1984) https://doi.org/10.2355/isijinternational1966.24.47
  8. K. Kunisada and H. Iwai, Transactions ISIJ 27, 263 (1987) https://doi.org/10.2355/isijinternational1966.27.263
  9. A. Inoue, Y. Komatsu, and S. Kuwano, 4th Int. Conf. on Molten Slags and Fluxes, Snedai, ISIJ, 398 (1992)
  10. R. Inoue and H. Suito, Trans. ISIJ 25, 118 (1985) https://doi.org/10.2355/isijinternational1966.25.118
  11. S. Hara, T. Toknoami, and K. Ogino, 4th International Conference on Molten Slag and Fluxes (1992)
  12. H. Ishii and R. J. Fruehan, Iron and Steelmaking 47 (1997)
  13. V. T. Burtsev, Russian Metallurgy 4, 16 (1999)
  14. W. H. Van Niekerk, and R. J. Dippenaar, Metall. Mater. Trnas. B. 29B, 147 (1998) https://doi.org/10.1007/s11663-998-0017-y
  15. C. Nassaralla, R. J. Fruehan, and D. J. Min, Metall. Trans. B. 22B, 33 (1991) https://doi.org/10.1007/BF02672524
  16. N. Sano, F. Tsukihashi, and A. Tagaya, ISIJ Int. 31, 1345 (1991) https://doi.org/10.2355/isijinternational.31.1345
  17. K. Kunisada and H. Iwai, Tans. ISIJ 27, 263 (1987) https://doi.org/10.2355/isijinternational1966.27.263
  18. A. Tagaya, H. Chiba, F. Tsukihashi, and N. Sano, Metallurgical Transactions B 22B, 499 (1991) https://doi.org/10.1007/BF02654288
  19. S. H. Lee, S. M. Moon, J. H. Park, and D. J. Min, Metal. Material. Trans. 33B, 55 (2002) https://doi.org/10.1007/s11663-002-0085-3
  20. J. S. Park, K. H. Park, and D. J. Min, J. Kor. Inst. Met. & Mater. 41, 260 (2003)
  21. S. S. Wang, A. J. Kuritis, and J. M. Toguri, Can. Met. Quart. 12, 383 (1973) https://doi.org/10.1179/cmq.1973.12.4.383
  22. R. U. Pagador, M. Hino, and K. Itagaki, Mater. Trans. JIM 40, 225 (1999) https://doi.org/10.2320/matertrans1989.40.225
  23. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York, 1-24 (1980)
  24. M. Muraki, H. Fukushima, and N. Sano, Trans. ISIJ 25, 1025 (1985) https://doi.org/10.2355/isijinternational1966.25.1025
  25. J. Im, K. Morita, and N. Sano, ISIJ Int. 36, 517 (1996) https://doi.org/10.2355/isijinternational.36.517
  26. S. Tabuchi and N. Sano, Metall. Mater. Trans. B 15B, 353 (1984)
  27. S. Nakamura, F. Tsukihashi, and N. Sano, ISIJ Int. 33, 53 (1993) https://doi.org/10.2355/isijinternational.33.53
  28. J. C. Wrampelmeyer, S. Dimitrov, and D. Janke, Steel Research 60, 539 (1989) https://doi.org/10.1002/srin.198901701
  29. H. Momokawa and N. Sano, Metall. Trans. 13B, 643 (1982)
  30. C. Wagner, Metallurgical Transaction B 6B, 405 (1975) https://doi.org/10.1007/BF02913825
  31. M. Allbert, R. Parra, C. Saint-Jours, M. Tmar, 'Thermodynamic activity data for slag systems', Slag Atlas 2nd ed., Verlag Sthleisen GmbH, D-D$\ddot{u}$sseldorf, Germany, 243 (1995)
  32. H. Suito and R. Inoue, Trans. ISIJ 22, 869 (1982) https://doi.org/10.2355/isijinternational1966.22.869
  33. A. Sabandi, H. Katayama, and T. Momono, ISIJ International 38, 781 (1998) https://doi.org/10.2355/isijinternational.38.781
  34. R. Inoue, H. Li, and H. Suito, Transactions ISIJ 28, 179 (1988) https://doi.org/10.2355/isijinternational1966.28.179
  35. D. J. Min and N. Sano, Metallurgical Transactions B 20B, December, 871 (1989) https://doi.org/10.1007/BF02670192