고압용기로 사용되는 후방압출된 알루미늄 6061합금의 기계적 특성에 미치는 용체화처리 및 시효처리의 영향

The Effect of Solution Heat Treatment and Aging Treatment on the Mechanical Properties of Backward Extruded A6061 Alloy for Pressure Vessels

  • 권의표 (전북대학교 공과대학 신소재공학부.공업기술연구 센터) ;
  • 우기도 (전북대학교 공과대학 신소재공학부.공업기술연구 센터) ;
  • 문민석 (전북대학교 수소연료전지 특성화 대학원) ;
  • 강덕수 (전북대학교 공과대학 신소재공학부.공업기술연구 센터) ;
  • 남궁천 ((주)케이시알) ;
  • 유계형 ((주)케이시알)
  • Kwon, Eui Pyo (Division of Advanced Materials Engineering & Research Center of Industrial Technology, Chonbuk National University) ;
  • Woo, Kee Do (Division of Advanced Materials Engineering & Research Center of Industrial Technology, Chonbuk National University) ;
  • Moon, Min Seok (Department of Hydrogen & Fuel Cells Engineering, Graduated School, Chonbuk National University) ;
  • Kang, Duck Soo (Division of Advanced Materials Engineering & Research Center of Industrial Technology, Chonbuk National University) ;
  • Nam, Gung Cheon (KCR CO., LTD.) ;
  • Yoo, Gye Hyoung (KCR CO., LTD.)
  • 투고 : 2008.11.29
  • 발행 : 2009.03.25

초록

Mechanical properties and precipitation behavior of backward extruded 6061 Al alloy for pressure vessel were investigated using tensile test, transmission electron microscopy (TEM) and differential scanning calorimeter (DSC). In this study, solution heat treatment (SHT) was performed at $535^{\circ}C$ for 30~90 min and aging treatment was conducted at 177 and $190^{\circ}C$ for 1~7 h. Maximum tensile strength of $36.6kgf/mm^2$ and yield strength of $33.29kgf/mm^2$ were achieved at the aging time of 5 h at $190^{\circ}C$. TEM observation showed that fine needle-like ${\beta}^{{\prime}{\prime}}$ phase which has 35~45 nm of length was uniformly distributed in the aged 6061 Al alloy specimen. From tensile test, TEM and DSC analysis, it is expected that aging time of 2~5 h at $190^{\circ}C$ is suitable for the extruded A6061 used as pressure vessels.

키워드

과제정보

연구 과제 주관 기관 : (주)KCR

참고문헌

  1. K. Mori, S. Maki, and M. Ishiguro, Int. J. Machine Tools and Manufacture. 46, 1966 (2006) https://doi.org/10.1016/j.ijmachtools.2006.01.011
  2. A. R. Daud and Karen M. C. Wong, Mater. Letters. 58, 2545 (2004) https://doi.org/10.1016/j.matlet.2004.03.011
  3. Jong-Soo Lee, Sug-Won Kim, and Kee-Do Woo, J. Kor. Inst. Met. & Mater. 36, 1355 (1998)
  4. Kee-Do Woo, In-O Hwang, and Jong-Soo Lee, J. Kor. Inst. Met. and Mater. 37, 1468 (1999)
  5. W. F. Miao and D. E. Laughlin, Scripta Materialia. 40, 873 (1999) https://doi.org/10.1016/S1359-6462(99)00046-9
  6. C. S. Tsao, C. Y. Chen, U. S, Jeng, and T. Y. Kuo, Acta Mater. 54, 4621 (2006) https://doi.org/10.1016/j.actamat.2006.06.005
  7. S. P. Chen, M. S. Vossenberg, F. J. Vermolen, J. van de Langkruis, and S. van der Zwaag, Mater. Sci. Eng. 272, 250 (1999) https://doi.org/10.1016/S0921-5093(99)00518-3
  8. Hans J. Roven, Manping Liu, and Jens C. Werenskiold, Mater. Sci. Eng. 483-484, 54 (2008) https://doi.org/10.1016/j.msea.2006.09.142
  9. Jun-Yen Uan, Chi-Yuan Cho, Zhi-Ming Chen, and Jun-Kai Lin, Mater. Sci. Eng. 419, 98 (2006) https://doi.org/10.1016/j.msea.2005.11.049
  10. R. Vissers, M. A. van Huis, J. Jansen, H. W. Zandbergen, C. D. Marioara, and S. J. Andersen, Acta Mater. 55, 3815 (2007) https://doi.org/10.1016/j.actamat.2007.02.032
  11. G. A. Edwards, K. Stiller, G. L. Dunlop, and M. J. Couper, Acta mater. 46, 3893 (1998) https://doi.org/10.1016/S1359-6454(98)00059-7
  12. C. Ravi and C. Wolverton, Acta Mater. 52, 4213 (2004) https://doi.org/10.1016/j.actamat.2004.05.037
  13. S. J. Andersen, H. W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, and O. Reiso, Acta mater. 46, 3283 (1998) https://doi.org/10.1016/S1359-6454(97)00493-X
  14. A. Gaber, M. A. Gaffar, M. S. Mostafa, and E. F. Abo Zeid, J. Alloys and Compounds. 429, 167 (2007) https://doi.org/10.1016/j.jallcom.2006.04.021