Texture Development of CeO2 Buffer Layer and its Effect on Superconducting MOD-YBCO Films

CeO2 완충층의 결정성장 특성 및 금속 유기물 증착법으로 제조된 초전도 YBCO층에 미치는 영향

  • Chung, Kook Chae (Korea Institute of Materials Science) ;
  • Kim, Y.K. (Korea Institute of Materials Science) ;
  • Wang, X.L. (Institute for Superconducting and Electronic Materials, Univ. of Wollongong) ;
  • Dou, S.X. (Institute for Superconducting and Electronic Materials, Univ. of Wollongong)
  • 정국채 (한국기계연구원 부설 재료연구소 나노기능분말연구그룹) ;
  • 김영국 (한국기계연구원 부설 재료연구소 나노기능분말연구그룹) ;
  • ;
  • Received : 2009.06.23
  • Published : 2009.10.25

Abstract

$CeO_2$ buffer layers have been deposited on YSZ single crystal substrates via a radio-frequency sputtering method. We focused on the texture development of $CeO_2$ with out-of-plane alignment and its effects on a superconducting YBCO layer, which was deposited by metal organic deposition. $CeO_2$ layers were grown epitaxially on single crystal YSZ substrates and subsequent YBCO layers were also grown epitaxially from $CeO_2$ layers. It was observed that the intensity of $CeO_2$(200) decreased with deposition temperature. ${\theta}-2{\theta}$ scan FWHM values of $CeO_2$(200) were inversely proportional to the peak intensities of $CeO_2$(200). The sample with the lowest $CeO_2$(200) intensity and poor out-of-plane alignment showed a strong reaction with the MOD-YBCO layer resulting in a thicker $BaCeO_3$ layer. The texture and superconducting property of the YBCO layer were affected indirectly by the formation of a $BaCeO_3$ layer at the interface between the $CeO_2$ and YBCO layers.

Keywords

Acknowledgement

Supported by : 국제과학기술협력재단

References

  1. Y. Shiohara, M. Yoshizumi, T. Izumi, and Y. Yamada, Phsica C. 468, 1498 (2008) https://doi.org/10.1016/j.physc.2008.05.232
  2. S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman, and D. F. Lee, Science 311, 1911 (2006) https://doi.org/10.1126/science.1124872
  3. J. Durrell and N. Rutter, Supercond. Sci. Technol. 22, 013001 (2009) https://doi.org/10.1088/0953-2048/22/1/013001
  4. K. Develos-Bagarinao, H. Yamasaki, and Y. Nakagawa, Supercond. Sci. Technol. 19, 873 (2006) https://doi.org/10.1088/0953-2048/19/8/033
  5. Y. Sutoh, K. Nakaoka, M. Miura, J. Matsuda, T. Nakanishi, A. Nakai, M. Yoshizumi, T. Izumi, S. Miyata, Y. Iijima, Y. Yamada, Y. Shiohara, and T. Saitoh, Physica C. 468, 1594 (2008) https://doi.org/10.1016/j.physc.2008.05.080
  6. Y. Sutoh, K. Nakaoka, J. Matsuda, Y. Kitoh, T. Nakanishi, A. Nakai, M. Yoshizumi, S. Miyata, Y. Yamada, T. Izumi, Y. Shiohara, and T. Saitoh, Physica C. 463-465, 571 (2007) https://doi.org/10.1016/j.physc.2007.05.021
  7. P. Du, S. Wang, H. Chen, Z. Wang, J. Sun, Z. Han, W. Schmidt, and H. Neumuller, Phsica C. 463-465, 580 (2007) https://doi.org/10.1016/j.physc.2007.05.023
  8. T. Kato, T. Araki, T. Yuasa, Y. Iijima, T. Saitoh, T. Hirayama, Y. Yamada, and I. Hirabayashi, Physica C. 378, 1028 (2002) https://doi.org/10.1016/S0921-4534(02)01571-X
  9. J. Xiong, W. Qin, X. Cui, B. Tao, J. Tang, and Y. Li, Physica C. 442, 124 (2006) https://doi.org/10.1016/j.physc.2006.05.024
  10. J. H. Shin, Y. J. Cho, and D. K. Choi, J. Kor. Inst. Met. & Mater. 47, 38 (2009)
  11. K. Chung, J. Yoo, Y. Kim, X. Wang, and S. Dou, Supercond. Sci. Technol. 22, 025007 (2009) https://doi.org/10.1088/0953-2048/22/2/025007
  12. Y. Tokunaga, H. Fuji, R. Teranishi, J. Shibata, S. Asada, T. Honjo, T. Izumi, Y. Shiohara, Y. Iijima, and T. Saitoh, Physica C. 392-396, 909 (2003) https://doi.org/10.1016/S0921-4534(03)01150-X