Influence of Coating Process on Properties of BTA (Benzotriazole) Coating Film for Outdoor Bronze Artifacts Conservation

옥외 청동문화재 보존을 위한 BTA 방청 피막의 특성에 미치는 코팅 조건의 영향

  • Shim, G.T. (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University) ;
  • Yoo, Y.R. (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University) ;
  • Kwon, Y.H. (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University) ;
  • Kim, Y.S. (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University)
  • 심규태 (국립안동대학교 신소재공학부 청정소재기술연구센터) ;
  • 유영란 (국립안동대학교 신소재공학부 청정소재기술연구센터) ;
  • 권용혁 (국립안동대학교 신소재공학부 청정소재기술연구센터) ;
  • 김영식 (국립안동대학교 신소재공학부 청정소재기술연구센터)
  • Received : 2009.06.09
  • Published : 2009.10.25

Abstract

Many ancient and historical artifacts were made by copper and its alloys. In the case of outdoor exposure artifacts, the surface could be suffered from corrosion and tarnish by the reaction with its environment. In order to preserve the artifacts, surface treatment would be needed and BTA coating has been usually applied to tin-bronze. This paper dealt with the evaluation of the properties of BTA coated film using a linear polarization method and AC impedance measurement. On the base of corrosion rate and film resistance for the specimen formed by coating process, optimum coating conditions are as follows; 3 cycles brushing or 3 cycles spraying coatings for natural dried process and 1 cycle brushing coating or 5 cycles spraying coating for hot-air dried process.

Keywords

Acknowledgement

Supported by : 국립문화재연구소

References

  1. H. J. Park, M. S. Thesis, p. 1-8, Hanseo University, Seosan (2006)
  2. B. K. Kim, Korean Society of Steel Construction 8, 8 (1996)
  3. Y. H. Hur, M. S. Thesis, p. 1-2, Yongin University, Yongin (2003)
  4. T. T. N. Lan, N. T. T. Binh, N. N. Tru, T. Yoshino, and M. Yasuki, Corrosion Science and Technology. 7, 99 (2008)
  5. J. S. Park and Y. D. Jung, Met. Mater. Int. 13, 261 (2007) https://doi.org/10.1007/BF03027815
  6. B. S. Fang, C. G. Olson, and D. W. Lynch, Surf. Sci. 176, 476 (1986) https://doi.org/10.1016/0039-6028(86)90050-6
  7. C. Chadwick and T. Hashemi, Corros. Sci. 18, 39 (1978) https://doi.org/10.1016/S0010-938X(78)80074-2
  8. C. Tornkvist, D. Shireey, J. Bergnam, B. Liedburg, and C. Lergraf, J. Electrochem. Soc. 136, 58 (1989) https://doi.org/10.1149/1.2096614
  9. R. Youda, H. Nishihara, and K. Aramaki, Electrochim. Acta 35, 1011 (1990) https://doi.org/10.1016/0013-4686(90)90036-Y
  10. H. J. Park, M. S. Thesis, p. 19-24, in ref. 1
  11. L. B. Brostoff and E. R. de la Rie, Chemical characterization of metal/coating interface from model samples for outdoor bronzes by reflection-absorption infrared spectroscopy (RAIR) amd attenuated total reflection spectroscopy (ATR), Metal 98, France, James & James, p. 320-328, (1998)
  12. K. H. Cho, J. Corros Sci. Soc. of Korea 25, 444 (1996)
  13. M. H. Kuk, C. Lee, and W. M. Jee, J. Corros Sci. Soc. of Korea. 15, 11 (1986)
  14. K. H. Cho, J. Corros Sci. Soc. of Korea 27, 262 (1998)
  15. K. K. Baek, M. H. Ahn, J. Corros Sci. Soc. of Korea 29, 4 (2000)
  16. Y. J. Park, J. of Korean Phy. Soc. 29, 745 (1996)
  17. H. S. Lee, B. Y. Park, H. D. Jeong, and H. J. Kim, J. of KIEEME 20, 74 (2007) https://doi.org/10.4313/JKEM.2007.20.1.074
  18. K. Rahmouni, H. Takenouti, N. Hajjaji, A. Srhiri, and L. Robbiola, Electrochim. Acta 54, 5206 (2009) https://doi.org/10.1016/j.electacta.2009.02.027
  19. K. F. Khaled, Electrochim. Acta 54, 4345 (2009) https://doi.org/10.1016/j.electacta.2009.03.002
  20. S. M. Milic and M. M. Antonijevic, Corros. Sci. 51, 28 (2009) https://doi.org/10.1016/j.corsci.2008.10.007
  21. M. Finsgar, A. Lesar, A. Kokalj, and I. Milosev, Electrochim. Acta 53, 8287 (2008) https://doi.org/10.1016/j.electacta.2008.06.061
  22. T. Kosec, D. K. Merl, and I. Milosev, Corros. Sci. 50, 1987 (2008) https://doi.org/10.1016/j.corsci.2008.04.016
  23. J. M. Maciel, R. F. V. V. Jaimes, P. Corio, J. C. Rubim, P. L. Volpe, A. A. Neto, and S. M. L. Agostinho, Corros. Sci. 50, 879 (2008) https://doi.org/10.1016/j.corsci.2007.10.011
  24. T. Kosec, I. Milosev, and B. Pihlar, Appl. Surf. 253, 8863 (2007) https://doi.org/10.1016/j.apsusc.2007.04.083
  25. F. M. Al Kharafi, A. M. Abdullah, I. M. Ghayad, and B. G. Ateya, Appl. Surf. 253, 8986 (2007) https://doi.org/10.1016/j.apsusc.2007.05.017
  26. S. Mamas, T. Kiyak, M. Kabasakaloglu, and A. Koc, Mater. Chem. Phys. 93, 41 (2005) https://doi.org/10.1016/j.matchemphys.2005.02.012
  27. M. H. Kuk, C. Lee, and W. M. Jae, J. Corros Sci. Soc. of Korea 15, 11 (1986)
  28. K. K. Baek and M. H. Ahn, J. Corros Sci. Soc. of Korea 29, 2172 (2000)
  29. J. S. Lee, W. S. Kim, and J. S. Kim, J. Kor. Inst. Met. & Mater. 46, 26 (2008)
  30. G. Xue, J. Ding, P. Lu, and J. Dong, J. Phys. Chem. 95, 7380 (1991) https://doi.org/10.1021/j100172a050
  31. J. O. Nilsson, C. Tornkvist, and B. Liedberg, Appl. Surf. Sci. 37, 306 (1989) https://doi.org/10.1016/0169-4332(89)90493-5
  32. J. C. Rubim, Chem. Phys. Lett. 167, 209 (1990) https://doi.org/10.1016/0009-2614(90)85007-Y
  33. K. H. Wall and I. Davis, J. Apply. Chem. 15, 389 (1965) https://doi.org/10.1002/jctb.5010150808
  34. M. Oertel, P. Klusener, M. Kempken, A. Benninghoven, H. J. Rother, and R. Holm, Appl. Surf. Sci. 37, 135 (1989) https://doi.org/10.1016/0169-4332(89)90476-5
  35. MINOLTA, Precise Color Communication, Minolta Co., Ltd. (1998)