Microstructure and Mechanical Properties of Ag-27.5%Cu-20.5%Zn-2.5%Mn-0.5%Ni Brazing Alloy Manufactured by Twin Roll Strip Casting

쌍롤 박판 주조법으로 제조한 Ag-27.5%Cu-20.5%Zn-2.5%Mn-0.5%Ni 브레이징 합금의 미세조직 및 기계적 특성

  • Kim, Sung-Jun (School of Advanced Materials Engineering, Andong National University) ;
  • Kang, Won-Guk (School of Advanced Materials Engineering, Andong National University) ;
  • Kim, Mun-Chul (Non-ferrous Refining Project, RIST) ;
  • Kim, Yong-Chan (Non-ferrous Refining Project, RIST) ;
  • Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
  • 김성준 (안동대학교 공과대학 신소재공학부 청정소재기술연구센터) ;
  • 강원국 (안동대학교 공과대학 신소재공학부 청정소재기술연구센터) ;
  • 김문철 (포항산업과학연구원 비철제련연구단) ;
  • 김용찬 (포항산업과학연구원 비철제련연구단) ;
  • 이기안 (안동대학교 공과대학 신소재공학부 청정소재기술연구센터)
  • Received : 2009.01.22
  • Published : 2009.10.25

Abstract

The suitability of twin roll strip casting for Ag-27.5%Cu-20.5%Zn-2.5%Mn-0.5%Ni brazing alloy (known as HS-49D) was examined in the present work and the mechanical properties and microstructure of the strip were also investigated. The effect of annealing heat treatment on the properties was also studied. The new manufacturing process has applications in the production of the brazing alloy. XRD and microstructural analyses of the Ag-27.5%Cu-20.5%Zn-2.5%Mn-0.5%Ni strip revealed a eutectic microstructure of an Ag-rich matrix (FCC) and a Cu-rich phase (FCC) regardless of heat treatment. The results of mechanical tests showed tensile strength of 434 MPa and 80% elongation for the twin roll casted strip. Tensile results showed decreasing strengths and increasing elongation with annealing heat treatment. Microstructural evolution and fractography were also investigated and related to the mechanical properties.

Keywords

Acknowledgement

Supported by : (주)희성금속

References

  1. P. E. Doherty and D. R. Harraden, Weld J. 10, 37 (1977)
  2. M. L. Santella and A. B. Patterson, Mater. Sci. Eng. A. 258, 270 (1998) https://doi.org/10.1016/S0921-5093(98)00944-7
  3. S. J. Lee, S. K. Wu, and R. Y. Lin, Acta Mater. 46, 1283, (1998) https://doi.org/10.1016/S1359-6454(97)00298-X
  4. Z. He and L. Ding, Mater. Chem. and Phys. 49, 1 (1997) https://doi.org/10.1016/S0254-0584(97)80118-6
  5. W. C. Lee and C. S. Kang, J. Kor. Inst. Met. & Mater. 30, 664 (1992)
  6. K. Emmerich, Proc. Rapidly Solidified Materials Conf., San Diego, CA, p.405 (1986)
  7. A. Rabinkin, F. Reidinger, J. Marti, and L. Bendersky, Mat. Sci. Eng. A. 133, 256 (1991) https://doi.org/10.1016/0921-5093(91)90064-T
  8. S. J. Kim, M. C. Kim, Y. M. Kim and K. A. Lee, J. Kor. Inst. Met.& Mater. 45, 109 (2007)
  9. Silver Alloy and Method for Manufactureing the Same, Korea Patent 10-2006-0130980
  10. T. Haga, T. Nishiyama, S. Suzuki, Journal of Mater. Proces. Tech. 133, 103 (2003) https://doi.org/10.1016/S0924-0136(02)00251-0
  11. H. Watari, K. Davey, M. T. Rasgado, T. Haga, and S. Izawa, J. of Mater. Proces. Tech. 155-156, 1662 (2004) https://doi.org/10.1016/j.jmatprotec.2004.04.323
  12. Kevin M. McHugh, J.-P. Delplanque, S. B. Johnson, E. J. Lavernia, Y. Zhou, and Y. Lin, Mater. Sci. and Eng. A. 383, 96 (2004) https://doi.org/10.1016/j.msea.2004.02.041
  13. T. Haga, J. of Mater. Proces. Tech. 111, 64 (2001) https://doi.org/10.1016/S0924-0136(01)00498-8
  14. Ch. Gras, M. Meredith, and J. D. Hunt, J. of Mater. Proces. Tech. 167, 62 (2005) https://doi.org/10.1016/j.jmatprotec.2004.09.084
  15. J. G. Lee, S. S. Park, S. B. Lee, H. T. Chung, and N. J. Kim, Scripta Mater. 53, 693 (2005) https://doi.org/10.1016/j.scriptamat.2005.05.018
  16. D. M. Mattox and H. D. Smith, Am Ceram. Soc. Bull. 64, 1363 (1985)
  17. K. A. Lee, S. J. Kim, and M. C. Kim, Advanced Materials Research. 26-28, 485 (2007) https://doi.org/10.4028/www.scientific.net/AMR.26-28.485