Nanoporous Organo-functional Silica Synthesis Based on a Purely Inorganic Precursor

  • Oh, Chang-Sup (Korea Institute of Science and Technology Information, Reseat Program) ;
  • Koo, Kyung-Wan (Department of Defense Science and Technology, Hoseo University) ;
  • Han, Chang-Suk (Department of Defense Science and Technology, Hoseo University) ;
  • Kim, Jang-Woo (School of Display Engineering, Hoseo University) ;
  • Kim, Heon-Chang (Department of Chemical Engineering, Hoseo University) ;
  • Lee, Yong-Sang (Department of Chemical and Biomolecular Engineering, Sokang University) ;
  • Choi, Young-Tai (Korea Institute of Industrial Technology) ;
  • Kim, Yong-Ha (Department of Chemical Engineering, Pukyong National University)
  • Received : 2009.05.11
  • Published : 2009.08.25

Abstract

In this study we report a rapid synthesis of nanoporous organo-functional silica (OFS) with unimodal and bimodal pore structures encompassing pores ranging from meso-to macroscale. The problems of tediousness and high production cost in the conventional syntheses are overcome by co-condensation of an inexpensive inorganic precursor, sodium silicate with an organosilane containing trimethyl groups. The insitu covalent anchoring of the non-polar trimethyl groups to the inner pore walls prohibits irreversible shrinkage of the wet-gel during microwave drying at ambient pressure and thus larger size pores (from ca. 20 to ca. 100 nm) can be retained in the dried silica. The drying process of the silylated wet-gels at an ambient pressure can be greatly accelerated upon microwave exposure instead of drying in an oven or furnace. Using this approach, anoporous and superhydrophobic silicas showing a wide variation in texture and morphology can be readily synthesized in roughly two hours. The effects of various sol-gel parameters solely on the textural properties of the organo-functional silica (OFS) have been investigated and discussed.

Keywords

References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature 359, 710 (1992) https://doi.org/10.1038/359710a0
  2. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chemelka, and G. D. Stucky, Science 279, 548 (1998) https://doi.org/10.1126/science.279.5350.548
  3. D. B. Lee, W. S. Shim, J. S. Jang, and Jae Chun Lee, Met. Mater. Int. 9, 299 (2003) https://doi.org/10.1007/BF03027050
  4. J. H. Sun, Z. Shan, T. Maschmeyer, and M. O. Coppens, Langmuir 19, 8395 (2003) https://doi.org/10.1021/la0351156
  5. K. Ikari, K. Suzuki, and H. Imai, Langmuir 20, 11504(2004) https://doi.org/10.1021/la0483717
  6. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc. 121, 9611 (1999) https://doi.org/10.1021/ja9916658
  7. S. W. Kang and Y. S. Kim, J. Kor. Inst. Met. & Mater. 34, 1375 (1996)
  8. T. Asefa, M. J. MacLachlan, N. Coombs, and G. A. Ozin, Nature 402, 867 (1999) https://doi.org/10.1038/47229
  9. W. Wihinall, T. Asefa, and G. A. Ozin, Adv. Funct. Mater.15, 1696 (2005) https://doi.org/10.1002/adfm.200500151
  10. F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, Angew. Chem. Int. 45, 3216 (2006) https://doi.org/10.1002/anie.200503075
  11. J. Wen and G. L. Wikes, Chem. Mater. 8, 1667 (1996) https://doi.org/10.1021/cm9601143
  12. N. K. Raman, M. T. Anderson, and C. J. Brinker, Chem. Mater. 8, 1682 (1996) https://doi.org/10.1021/cm960138+
  13. J. J. Barton, L. M. bull, W. G. Klemperer, D. A. Loy, B. McEnaney, M. Misono, P. A. Monson, G. Pez, G. W. Scherer, J. C. Vartuli, and O. M. Yaghi, Chem. Mater. 11, 2633 (1999) https://doi.org/10.1021/cm9805929
  14. S. Illia, G. J. de A. A., C. Sanchez, B. Lebeaue, and J. Patrin, Chem. Rev. 102, 4093 (2002) https://doi.org/10.1021/cr0200062
  15. D. W. Lee, S. J. Park, S. K. Ihm, and K. H. Lee, Chem. Mater. 19, 937 (2007) https://doi.org/10.1021/cm062465f
  16. Y. H. Kim, G. B. Yi, Y. S. Ahn, J. G. Yeo, Y. T. Choi, and S. D. Bhagat, Micro. Meso. Mater. (2007), doi: 10.1016/j.micromeso.2007.03.026
  17. R. Deshpande, D. M. Smith, and C. J. Brinker, J. Non-Cryst. Solids 144, 32 (1992) https://doi.org/10.1016/S0022-3093(05)80380-1
  18. F. Schwertfeger, D. Frank, and M. Schimidt, J. Non-Cryst. Solids 225, 21 (1998) https://doi.org/10.1016/S0022-3093(98)00102-1
  19. A. V. Rao, E. Nilsen, and M. A. Einarsrud, J. Non-Cryst. Solids 296, 165 (2001) https://doi.org/10.1016/S0022-3093(01)00907-3
  20. M. H. Lim and A. Stein, Chem. Mater. 11, 3285 (1999) https://doi.org/10.1021/cm990369r
  21. S. D. Bhagat and A. V. Rao, Appl. Surf. Sci. 252, 4289(2006) https://doi.org/10.1016/j.apsusc.2005.07.006
  22. A. V. Rao, M. M. Kulkarni, D. P. Amalnerkar, and T. Seth, Appl. Surf. Sci. 206, 262 (2003) https://doi.org/10.1016/S0169-4332(02)01232-1
  23. H. Yokogawa and M. Yokoyama, J. Non-Cryst. Solids 186, 23 (1995) https://doi.org/10.1016/0022-3093(95)00086-0
  24. Y.-H. Kim, Y.-S. Ahn, J.-G. Yeo, and S. D. Bhagat, Micro. Meso. Mater. 96, 237 (2006) https://doi.org/10.1016/j.micromeso.2006.07.002
  25. Y.-H. Kim, M.-J. Moon, Y.-S. Ahn, J.-G. Yeo, and S. D. Bhagat, Solid State Sci. 9, 628 (2007) https://doi.org/10.1016/j.solidstatesciences.2007.04.020
  26. H. E. Rassy and A. C. Pierre, J. Non-Cryst. Solids 351, 1603 (2005) https://doi.org/10.1016/j.jnoncrysol.2005.03.048
  27. K. S. W. Sing, D. H. Everett, R. A. W. Haul, and L. Moscou, Pure Appl. Chem. 57, 603 (1985) https://doi.org/10.1351/pac198557040603