A Study on the Synthesis and Consolidation of Ti3Al by Electro-Discharge

전기방전에 의한 Ti3Al의 합성 및 소결 특성 연구

  • Jang, Hyungsun (Department of Advanced Materials Engineering, Sejong University) ;
  • Cho, Yujung (Department of Advanced Materials Engineering, Sejong University) ;
  • Kang, Taeju (Department of Advanced Materials Engineering, Sejong University) ;
  • Kim, Kibeom (Department of Advanced Materials Engineering, Sejong University) ;
  • Lee, Wonhee (Department of Advanced Materials Engineering, Sejong University)
  • 장형순 (세종대학교 신소재공학과) ;
  • 조유정 (세종대학교 신소재공학과) ;
  • 강태주 (세종대학교 신소재공학과) ;
  • 김기범 (세종대학교 신소재공학과) ;
  • 이원희 (세종대학교 신소재공학과)
  • Received : 2009.01.15
  • Published : 2009.08.25

Abstract

Direct syntheses of bulk $Ti_3Al$ via electro-discharge-sintering (EDS) of a stoichiometric elemental powder mixture were investigated. A capacitor bank of $450{\mu}F$ was charged with three input energies, 0.5, 1.0, and 1.5 kJ. The charged capacitor bank was then instantaneously discharged through 0.3 g of a Ti-25.0 at.%Al powder mixture for consolidation. Complete phase transformation occurred in less than $200{\mu}sec$ by the discharge and a bulk $Ti_3Al$ compact was obtained. Compared with consolidated samples fabricated by conventional methods such as high vacuum sintering and casting, the electro-discharge-sintered $Ti_3Al$ compact shows a very fine microstructure with a hardness value of 425 Hv. Electro-discharge-sintering under a $N_2$ atmosphere successfully modified the surface Ti oxide of the $Ti_3Al$ compact into Ti nitride, which concurred with the synthesis and consolidation of $Ti_3Al$. Complete conversion yielding a single phase $Ti_3Al$ is primarily dominated by the fast solid state diffusion reaction.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. M. J. Donachie, Superalloys; a technical guide, 2nd ed., p.1-100, Materials Park, OH (2002)
  2. G. B. Schaffer and P. G. McCormick, Metall. Trans. 21A, 2789 (1990) https://doi.org/10.1007/BF02646073
  3. S. W. Jo, G. W. Lee, J. T. Moon, and Y. S. Kim, J. Kor. Inst. Met. & Mater. 33, 107 (1995)
  4. A. K. Vasudvan and J. J. Petrovic, Mater. Sci. Eng. A155, 1(1992) https://doi.org/10.1016/0921-5093(92)90308-N
  5. M. S. Kim, S. Hanada, S. Watanabe, and O. Izumi, Acta Metall. 36, 2967 (1988) https://doi.org/10.1016/0001-6160(88)90179-4
  6. J. K. Tien, G. E. Vignoul, and W. M. Kopp, Mater. Sci. Eng. A143, 43 (1991) https://doi.org/10.1016/0921-5093(91)90724-2
  7. M. Oehring and R. Bormann, Mater. Sci. Eng. A143, 1330(1991) https://doi.org/10.1016/0921-5093(91)90984-U
  8. D. Parlapanski, S. Denev, S. Ruseva, and E. Gatev, J. Less Common Met. 171, 231 (1991) https://doi.org/10.1016/0022-5088(91)90146-U
  9. J. H. Ahn, H. S. Chung, R. Watanabe, and Y. H. Park, Mater. Sci. Forum 88, 347 (1991)
  10. M. A. Morris and D. G. Morris, J. Mater. Sci. 26, 4687(1991) https://doi.org/10.1007/BF00612407
  11. K. Omuro and H. Miura, Jpn. J. Appl. Phys. Lett. 60, 1433(1992) https://doi.org/10.1063/1.107313
  12. K. Omuro and H. Miura, Jpn. J. Appl. Phys. 30, 851 (1991) https://doi.org/10.1143/JJAP.30.L851
  13. F. Padella, E. Paradiso, N. Burgio, M. Magini, S. Martelli, W. Guo, and A. Iasonna, J. Less Common Met. 175, 79(1991) https://doi.org/10.1016/0022-5088(91)90351-4
  14. K. Okadome, K. Uhno, and T. Arakaw, J. Mater. Sci. 30, 1807 (1995) https://doi.org/10.1007/BF00351614
  15. J. Schlichting, High Temp-High Pressure 10, 241 (1978)
  16. F. D. Gac and J. J. Petrovic, J. Amer. Ceram. Soc. 68, 200(1985) https://doi.org/10.1111/j.1151-2916.1985.tb10182.x
  17. T. C. Lu, Y. G. Deng, C. G. Levi, and R. Mehrabian, Advanced Metal Matrix Composites for Elevated Temperatures Conference Proceedings (eds. M. N. Gungor, E. J. Lavernia, and S. G. Fishman), p.11, ASM International, Materials Park, Ohio, USA (1991)
  18. T. C. Lu, A. G. Evans, R. J. Hecht, and R. Mehrabian, Acta Metall. Mater. 39, 1853 (1991) https://doi.org/10.1016/0956-7151(91)90154-S
  19. P. J. Mestcher and D. S. Schwartz, J. Mater. Sci. 41, 52(1989)
  20. J. D. Cotton, Y. S. Kim, and M. J. Kaufman, Mater. Sci. Eng. A144, 287 (1991) https://doi.org/10.1016/0921-5093(91)90235-F
  21. M. J. Maloney and R. J. Hecht, Mater. Sci. Eng. A155, 19(1992) https://doi.org/10.1016/0921-5093(92)90309-O
  22. R. W. Mann and L. A. Clevenger, Properties of Metal Silicides(eds. K. Maex and M. Van Rossum), p.55, INSPEC, London, UK (1995)
  23. H. C. Yi and J. J. Moore, J. Mater. Sci. 25, 1159 (1990) https://doi.org/10.1007/BF00585421
  24. J. W. Mayer and S. S. Lau, Electronic Materials Science for Integrated Circuits in Si and GaAs, p.306, MacMillan Publishing Co. New York (1990)
  25. M. Sundararaman and P. Mukhopadhyay, Metallography 12, 87 (1979) https://doi.org/10.1016/0026-0800(79)90020-X
  26. G. H. Cao, W. Skrotzki, and T. Gemming, J. Alloys Compd. 417, 169 (2006) https://doi.org/10.1016/j.jallcom.2005.06.088
  27. Q. Feng and S. H. Whang, Acta Mater. 48, 4307 (2000) https://doi.org/10.1016/S1359-6454(00)00204-4
  28. W. H. Lee and D. A. Puleo, J. of Mater. Sci. Letters 18, 817(1999) https://doi.org/10.1023/A:1006653503849