Formation of Cobalt Nanoparticles by Thin Film Dewetting using Furnace and Pulse-Laser Annealing Processes

로 열처리 및 펄스레이저에 의한 박막의 비젖음 현상을 이용한 코발트 나노 입자 형성

  • Hwang, Suk-Hun (Department of Mat. Sci. & Eng., Hanbat National University) ;
  • Kim, Jung-Hwan (Department of Mat. Sci. & Eng., Hanbat National University) ;
  • Oh, Yong-Jun (Department of Mat. Sci. & Eng., Hanbat National University)
  • 황석훈 (한밭대학교 신소재공학부) ;
  • 김정환 (한밭대학교 신소재공학부) ;
  • 오용준 (한밭대학교 신소재공학부)
  • Received : 2009.01.07
  • Published : 2009.05.25

Abstract

Co nanoparticles on silica substrates were fabricated by inducing a thin-film dewetting through two different processes-furnace annealing and pulsed-laser annealing. The effects of annealing temperature, film thickness and laser energy density on dewetting morphology and mechanism were investigated. Co thinfilms with thicknesses between 3 to 15 nm were deposited using ion-beam sputtering, and then, in order to induce dewetting, thermally annealed in furnace at temperatures between 600 and $900^{\circ}C$. Some as-deposited films were irradiated using a Nd-YAG pulsed-laser of 266 nm wavelength to induce dewetting in liquid-state. Films annealed in furnace agglomerated to form nanoparticles above $700^{\circ}C$, and those average particle size and spacing were increased with an increase of film thickness. On the laser annealing process, above the energy density of $100mJ/cm^2$, metal films were completely dewetted and the agglomerated particles exhibited greater size uniformity than those on the furnace annealing process. A detailed dewetting mechanism underlaying both processes were discussed.

Keywords

Acknowledgement

Supported by : 한국산업기술재단

References

  1. Y. F. Guan, R. C. Pearce, A. V. Melechko, D. K. Hensley, M. L. Simpson, and P. D. Rack, Nanotechnology 19, 235604 (2008) https://doi.org/10.1088/0957-4484/19/23/235604
  2. J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, Journal of Magnetism and Magnetic Materials 256, 449 (2003) https://doi.org/10.1016/S0304-8853(02)00898-3
  3. C. A. Ross, F. J. Castano, E. Rodriguez, S. Haratani, B. Vogeli, and H. I. Smith, J. Appl. Phys. 97, 053902 (2005) https://doi.org/10.1063/1.1850998
  4. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. 13, 1501 (2001) https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  5. M. Gratzel, Prog. Photovolt. Res. Appl. 8, 171 (2000) https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  6. S. Y. Chou, P. R. Kraus, W. Zhang, L. Guo, and L. Zhuang, J. Vac. Sci. Technol. B 15, 2897 (1997) https://doi.org/10.1116/1.589752
  7. S. P. Li, A. Lebib, D. Peyrade, M. Natali, and Y. Chen, Appl. Phys. Lett. 77, 2743 (2000) https://doi.org/10.1063/1.1320462
  8. E. Jiran and C. V. Thompson, Thin Solid Films 208, 23 (1991) https://doi.org/10.1016/0040-6090(92)90941-4
  9. A. L. Giermann and C. V. Thompson, Appl. Phys. Lett. 86, 121903 (2005) https://doi.org/10.1063/1.1885180
  10. W. K. Choi, T. H. Liew, H. G. Chew, F. Zheng, C. V. Thompson, Y. Wang, M. H. Hong, X. D. Wang, L. Li, and J. Yun, Small 4, 330 (2008) https://doi.org/10.1002/smll.200700728
  11. C. Favazza, J. Trice, H. Krishna, and R. Kalyanaramana R. Sureshkumar, Appl. Phys. Lett. 88, 153118 (2006) https://doi.org/10.1063/1.2195113
  12. C. Favazza, R. Kalyanaram, and R. Sureshkumar, Nanotechnology 17, 4229 (2006) https://doi.org/10.1088/0957-4484/17/16/038
  13. W. Kan and H. Wong, J. Appl. Phys. 97, 043515 (2005) https://doi.org/10.1063/1.1845579
  14. J. Trice, C. Favazza, D. Thomas, H. Garcia, R. Kalyanaraman, and R. Sureshkumar, Phys. Rev. Lett. 101, 017802 (2008) https://doi.org/10.1103/PhysRevLett.101.017802
  15. J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007) https://doi.org/10.1103/PhysRevB.75.235439