Influence of Texture on the Tensile Properties in AZ31 Magnesium Alloy

AZ31 마그네슘합금의 집합조직에 따른 인장특성

  • Park, No-Jin (Department of Information & Nano Materials Engineering, Kumoh National Institute of Technology) ;
  • Hwang, Joong-Ho (Department of Information & Nano Materials Engineering, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (Department of Information & Nano Materials Engineering, Kumoh National Institute of Technology)
  • 박노진 (금오공과대학교 신소재시스템공학부) ;
  • 황중호 (금오공과대학교 신소재시스템공학부) ;
  • 노재승 (금오공과대학교 신소재시스템공학부)
  • Received : 2008.09.01
  • Published : 2009.01.28

Abstract

Magnesium alloys are drawing a lot of attention and have been extensively studied. The major obstacle to the practical application of the alloys is the poor formability at room temperature, originating basically from the insufficient number of slip system. Development of a proper texture is one promising solution to improve the formability. In the present work, after extrusion and full annealing, microstructures, texture developments and tensile properties of AZ31 Mg alloys are studied. After full annealing strong <1010>||ED fiber texture and weak <1120>+<1230>||ED fiber texture (c-axes in the radial direction) were developed. The textures are distinctly influencing the tensile properties, which can be understood in terms of the activation of basal slip modes. With the random orientation, which is developed in the $45^{\circ}$ sample to the extrusion direction, the better workability can be achieved at room temperature.

Keywords

Acknowledgement

Supported by : 금오공과대학교

References

  1. H. E. Friedrich and B. L. Mordike (Eds.), Magnesium Technology, p.499, Springer-Verlag, Berlin (2006)
  2. M. M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, p.7, ASM International, OH (1997)
  3. K. S. Nair and M. C. Mittal, Mater. Sci. Forums 30, 89 (1998) https://doi.org/10.4028/www.scientific.net/MSF.30.89
  4. H. Yoshinga and R. Horiuchi, Mater. Trans. JIM 4, 1 (1963)
  5. T. Obara, H. Yoshinga and S. Morozumi, Acta. Met. 21, 845 (1973) https://doi.org/10.1016/0001-6160(73)90141-7
  6. I. J. Polmear, Mater. Trans. JIM 37, 12 (1996)
  7. D. K. Xu, L.Liu, Y. B. Xu and E.H. Han, Mater. Sci. Eng. A 443, 248 (2007) https://doi.org/10.1016/j.msea.2006.08.037
  8. B. Shin, Y. Kim and D. Bae, J. Kor. Inst. Met. & Mater. 46, 1 (2008)
  9. L. W. F. Mackenzie and M. Peguleryuz, Mater. Sci. Eng. A 480, 189 (2008) https://doi.org/10.1016/j.msea.2007.07.003
  10. R. K. Mishra, A. K. Gupta, P. R. Rao, A. K. Sachdev, A. M. Kumar and A. A. Luo, Scripta Mater. 59, 562 (2008) https://doi.org/10.1016/j.scriptamat.2008.05.019
  11. T. Laser, Ch. Hartig, M. R. Nuernberg, D. Letzig and R. Bormann, Acta Mater. 56, 2791 (2008) https://doi.org/10.1016/j.actamat.2008.02.010
  12. N. Stanford and M. Barnett, Scripta Mater. 58, 179 (2008) https://doi.org/10.1016/j.scriptamat.2007.09.054
  13. H. J. Bunge, Texture Analysis in Materials Science, p.47 Butterworths Pub., London (1982)
  14. H. E. Exner, H. P. Hougardy, Einfuehrung in die Quantitative Gefuegeanalyse, p.25, DGM Verlag, Oberrusel (1986)
  15. E. E. Underwood, Quantitative Stereology, p.60 Addison-Wesley Pub., Reading, MA (1970)