RAPD(Random Amplified Polymorphic DNA)를 이용한 장뇌삼의 지역별 품종 구분

Identification of Korean Mountain Cultivated Ginseng by RAPD

  • 최지영 (동국대학교 바이오환경과학과) ;
  • 이주희 (동국대학교 바이오환경과학과) ;
  • 이수광 (동국대학교 바이오환경과학과) ;
  • 강호덕 (동국대학교 바이오환경과학과)
  • Choi, Ji-Young (Dept. of Biological and Environmental Science, Dongguk University) ;
  • Lee, Ju-Hee (Dept. of Biological and Environmental Science, Dongguk University) ;
  • Lee, Su-Gwang (Dept. of Biological and Environmental Science, Dongguk University) ;
  • Kang, Ho-Duck (Dept. of Biological and Environmental Science, Dongguk University)
  • 투고 : 2009.11.19
  • 심사 : 2009.12.18
  • 발행 : 2009.12.31

초록

본 연구에서는 서로 다른 지역에서 재배된 장뇌삼 8품종과 밭에서 재배된 재배인삼 등 총 9개체에 대해 장뇌삼 품종들 간의 유연관계를 분석하였다. RAPD분석에 사용한 random primer는 총 40종류(OPA 1~20, OPB 1~20)였으며, 이 중 34개가 각기 다른 지역에서 재배된 품종간의 집단을 형성하여 9개 품종간 유연관계를 밝히는데 유용하였다. 유연관계를 분석한 결과, 홍천과 재배인삼, 의성과 금산, 진안과 풍기와 강화, 상주와 안동 4개의 그룹으로 구분되었으며 이는 다시 2개의 그룹 "홍천-재배인삼-의성-금산", "풍기-강화-상주-안동"으로 구분 되었다. 9개 지역에서 수집한 품종간의 유사도 값은 최저 0.30, 최고 0.53으로 나타났다. RAPD방법은 사용법이 간단하고 소요시간이 적게 소요될 뿐만 아니라 적은 양의 DNA시료로도 분석이 가능한 검정법으로 형태적인 차이가 구별되지 않는 장뇌삼 품종 간의 유전적 유연관계를 밝히는 데 유용한 방법임을 알 수 있었다. 그러나 품종별 계통유연관계를 보다 정확히 분석하기 위해서 AFLP 또는 Molecular Maker를 이용하거나 계통분류에 널리 이용되는 핵, 엽록체 DNA의 유전자 염기서열 비교와 같은 정밀한 분자계통학적 연구가 수행되어져야 할 것으로 사료된다.

This study was conducted to examine the genetic variations and intraspecific relationships between 9 individuals of Panax ginseng C.A Meyer by using RAPD (Randomly Amplified Polymorphic DNA) analysis. The 34 primers out of 40 random primers were amplified for all tested plants. The 48 (40%) among 244 bands derived from 34 primers shown polymorphism, and the 72 (64%) rest of bands showed similar forms. By regional groups Sangju and Andong samples located in Kyungsang buk-do showed a high similarity. However, Punggi located in Kyungsang buk-do showed higher similarity with Jinan's of Junla buk-do. In this way, it did not show that Panax ginseng from the same area has similarities. In future study we need to more specific molecular phylogenetic analysis such as AFLP technology and gene sequencing with nuclear chloroplast DNA in all samples.

키워드

참고문헌

  1. 한국인삼연초연구원. 1996. 최신고려인삼. 천일인쇄사, 대전.
  2. Baird, E., S. Cooper-Bland, R. Waugh, M. DeMaine, and W. Powell. 1992. Molecular characterisation of inter- and intra-specific somatic hybrids of potato using randomly amplified polymorphic DNA(RAPD) markers. Mol.Gen. Genet. 233: 469-475.
  3. Coleman, C. I., Hebert, J. H. and Reddy, P. 2003. The effects of Panax ginseng on quality of life. Clinical Phar. Therap. 28: 5-15.
  4. Eom, A. H., J. K. 때, D. H. Kim, and H. S. Jeong. 2004. Identification of arbuscular mycorrhizal fungi colonizing Panax ginseng using 18S rDNA sequence. J. Korean Soc. Appl. Biol. Chem. 47:182-187.
  5. Han, Y. J., K. R. Kwon, B. C. Cha, and O. M. Kwon. 2007. Component analysis of cultivated ginseng, cultivated wild ginseng, and natural wild ginseng by structural parts using HPLC method. Korean. Institute of Herbal Acupuncture. 10: 37-53.
  6. Ho, I. and F. Leung. 2002. Isolation and characterization of repetitive DNA sequences from Panax ginseng. Mol. Gen. Genet. 266:951-961. https://doi.org/10.1007/s00438-001-0617-6
  7. Korean. Soci. Ginseng. 1998. Advances in Ginseng Research. 127-137.
  8. Lee. H. J. 2000. Studies on the comparison of bioactive compounds and cell cultures of Panax ginseng C. A. Meyer and mountain Ginseng. department of Bioeng. and Tech. Graduate School of Ajou Univ.
  9. Lee, H. J., B. S. Yoo, and S. Y. Byun. 2000. Differences in free amino acids between Korean ginseng and mountain ginsengs. Korean J. Biotechnol. Bioeng. 15: 323-329.
  10. Lee, J. H., K. R. Kwon, and B. C. Cha. 2008. Component analysis of cultivated ginseng, Red ginseng, cultivated wild ginseng, and Red Wild ginseng using HPLC method. Korean. Institute of Herbal Acupuncture. 11: 87-95.
  11. Lee, S. W., S. W. Kang, D. Y. Kim, N. S. Seong, and H. W. Park. 2000. Comparison of growth characteristics and compounds of ginseng cultivated by paddy and upland cultivation. Korean J. Medicinal Crop. Sci. 12: 10-17.
  12. Lu, M., H. Wong, and W. Teng. 2001. Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep. 20: 674- 677.
  13. Mahady, G. B., H. S. Harry, and D. R. Fong. 2000. Ginsengs: A Review of safety and efficacy. Nut. Clin. Care. 3: 90-101. https://doi.org/10.1046/j.1523-5408.2000.00020.x
  14. Qin, J., F. C. Leung, Y. Fung, and B. Lin. 2004. Rapid authentication of ginseng species using microchip electrophoresis with laser-induced fluorescence detection. Anal Bioanal. Chem. 381:532-541.
  15. Song, S. H. and E. S. Min. 2004. Incompatible element characteristics of Ginsengs growing by different soils of the Keumsan. J. Ginseng Res. 28: 52-60. https://doi.org/10.5142/JGR.2004.28.1.052
  16. Vogler, B. K., Pittler, M. H. and Ernst, E. 1999. The efficacy of ginseng. A systematic review of randomized clinical trials. Eur. J. Clin. Pharma.55: 567-575. https://doi.org/10.1007/s002280050674
  17. Yoo, B. S., H. J. Lee, and S. Y. Byun. 2000. Differences in phenolic compounds between Korean ginseng and mountain ginseng. Korean J. Biotechnol. Bioeng. 15: 120-125.
  18. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalskim,. and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. https://doi.org/10.1093/nar/18.22.6531
  19. Yeoman, M. M. and C. L. Yeoman. 1996. Manipulating secondary metabolism in cultured plant cells. New Phyto. 134: 553-567. https://doi.org/10.1111/j.1469-8137.1996.tb04921.x