Effect of Stilbenoids on TNF-${\alpha}$-induced Adipokine Secretion

  • Ahn, Ji-Yun (Food Function Research Center, Korea Food Research Institute) ;
  • Lee, Hyun-Jung (Food Function Research Center, Korea Food Research Institute) ;
  • Kim, Sun-A (Food Function Research Center, Korea Food Research Institute) ;
  • Ha, Tae-Youl (Food Function Research Center, Korea Food Research Institute)
  • Published : 2009.10.31

Abstract

Tumor necrosis factor (TNF)-${\alpha}$ is chronically elevated in adipose tissues of obese rodents and humans. Increased levels of TNF-${\alpha}$ have been implicated in both the induction of atherogenic adipokines, such as plasminogen activator inhibitor (PAI)-1, and the inhibition of the anti-atherogenic adipokine, adiponectin. In this study, we investigated the effects of trans-stilbene, piceatannol, rhaponticin, and piceid on the TNF-${\alpha}$-induced atherogenic changes of adipokines in 3T3-L1 cells. Exposure to TNF-${\alpha}$ for 24 hr increased PAI-1 secretion and decreased adiponectin secretion. Among stilbenoids, piceatannol significantly inhibited the increased secretion of PAI-1 induced by TNF-${\alpha}$. Adiponectin secretion decreased by TNF-${\alpha}$ was recovered after trans-stilbene and rhaponticin treatments. Our results showed that stilbenoids exerted different effects on TNF-${\alpha}$-induced changes in adipokines secretion in 3T3-L1 adipocytes according to their structural characteristics.

Keywords

References

  1. Bavaresco L, Fregoni C, Cantu E, Trevisan M. Stilbene compounds: From the grapevine to wine. Drug Exp. Clin. Res. 25: 57-63 (1999)
  2. Arichi H, Kimura Y, Okuda H, Baba K, Kozawa M, Arichi S. Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism. Chem. Pharm. Bull. 30: 1766-1770 (1982) https://doi.org/10.1248/cpb.30.1766
  3. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPARgamma. Nature 429: 771-776 (2004) https://doi.org/10.1038/nature02583
  4. Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol. Endocrinol. 21: 1745-755 (2007) https://doi.org/10.1210/me.2007-0079
  5. Thakkar K, Geahlen RL, Cushman M. Synthesis and proteintyrosine kinase inhibitory activity of polyhydroxylated stilbene analogues of piceatannol. J. Med. Chem. 36: 2950-2955 (1993) https://doi.org/10.1021/jm00072a015
  6. Piver B, Fer M, Vitrac X, Merllon JM, Dreano Y, Berthow F, Lucas D. Involvement of cytochrome P4501A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem. Pharmacol. 68: 773-782 (2004) https://doi.org/10.1016/j.bcp.2004.05.008
  7. Waffo-Teguo P, Fauconneau B, Deffieux G, Huguet F, Vercauteren J, Merillon JM. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 61: 655-657 (1998) https://doi.org/10.1021/np9704819
  8. Waffo-Teguo P, Hawthorne ME, Cuendet M, Merillon JM, Kinghorn AD, Pezzuto JM, Mehta RG. Potential cancerchemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutr. Cancer 40: 173-179 (2001) https://doi.org/10.1207/S15327914NC402_14
  9. Hung LM, Chen JK, Lee RS, Liang HC, Su MJ. Beneficial effects of astringinin, a resveratrol analogue on the ischemia and reperfusion damage in rat heart. Free Radial Bio. Med. 30: 877-883 (2001) https://doi.org/10.1016/S0891-5849(01)00474-9
  10. Fabris S, Momo F, Ravagnan G, Stevanato R. Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes. Biophys. Chem. 135: 76-83 (2008) https://doi.org/10.1016/j.bpc.2008.03.005
  11. Lam RY, Woo AY, Leung PS, Cheng CH. Antioxidant actions of phenolic compounds found in dietary plants on low-density lipoprotein and erythrocytes in vitro. J. Am. Coll. Nutr. 26: 233-242 (2007)
  12. Hibasami H, Takagi K, Ishii T, Tsujikawa M, Imai N, Honda I. Induction of apoptosis by rhapontin having stilbene moiety, a component of rhubarb (Rheum officinale Baillon) in human stomach cancer KATO III cells. Oncol. Rep. 18: 347-351 (2007)
  13. James PT, Rigby N, Leach R. International obesity task force, The obesity epidemic, metabolic syndrome, and future prevention strategies. Eur. J. Cardiovasc. Prev. Rehabil. 11: 3-8 (2004) https://doi.org/10.1097/01.hjr.0000114707.27531.48
  14. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard- Barbash R, Hollenbeck A, Leitzmann MF. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. New Engl. J. Med. 355: 763-778 (2006) https://doi.org/10.1056/NEJMoa055643
  15. Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocr. Metab. 89: 2595-2600 (2004) https://doi.org/10.1210/jc.2004-0372
  16. Trayhurn P, Wood IS. Adipokines: Inflammation and the pleiotropic role of white adipose tissue. Brit. J. Nutr. 92: 347-355 (2004) https://doi.org/10.1079/BJN20041213
  17. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7: 941-946 (2001) https://doi.org/10.1038/90984
  18. Lam KS, Xu A. Adiponectin: Protection of the endothelium. Curr. Diab. Rep. 5: 254-259 (2005) https://doi.org/10.1007/s11892-005-0019-y
  19. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscl. Throm. Vas. 24: 29-33 (2004) https://doi.org/10.1161/01.ATV.0000099786.99623.EF
  20. Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360: 57-58 (2002) https://doi.org/10.1016/S0140-6736(02)09335-2
  21. Maahs DM, Ogden LG, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D, Hokanson JE, Ehrlich J, Eckel RH, Rewers M. Low plasma adiponectin levels predict progression of coronary artery calcification. Circulation 111: 747-753 (2005) https://doi.org/10.1161/01.CIR.0000155251.03724.A5
  22. Lyon CJ, Hsueh WA. Effect of plasminogen activator inhibitor-1 in diabetes mellitus and cardiovascular disease. Am. J. Med. 115: S62- S68 (2003)
  23. Skurk T, Hauner H. Obesity and impaired fibrinolysis: Role of adipose production of plasminogen activator inhibitor-1. Int. J. Obes. Relat. Metab. Disord. 28: 1357-1364 (2004) https://doi.org/10.1038/sj.ijo.0802778
  24. Juhan-Vague I, Alessi MC, Mavri A, Morange PE. Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance, and vascular risk. J. Thromb. Haemost. 1: 1575-1579 (2003) https://doi.org/10.1046/j.1538-7836.2003.00279.x
  25. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95: 2409-2415 (1995) https://doi.org/10.1172/JCI117936
  26. Samad F, Yamamoto K, Loskutoff DJ. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo: Induction by tumor necrosis factor-α and lipopolysaccharide. J. Clin. Invest. 97: 37-46 (1996) https://doi.org/10.1172/JCI118404
  27. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50: 2094-2099 (2001) https://doi.org/10.2337/diabetes.50.9.2094
  28. Ahn J, Lee H, Kim S, Ha T. Resveratrol inhibits TNF-α-induced changes of adipokines in 3T3-L1 adipocytes. Biochem. Bioph. Res. Co. 364: 972-977 (2007) https://doi.org/10.1016/j.bbrc.2007.10.109
  29. Ferrigi NR, McLanghlin JL, Powell RG, Smith CR. Use of potato disc and brine shrimp bioassays to detect activity and isolate piceatannol as the antileukemic principle from the seeds of Euphorbia Lagascae. J. Nat. Prod. 47: 347-352 (1984) https://doi.org/10.1021/np50032a019
  30. Cheong HS, Ryu Y, Kim KM. Anti-allergic action of resveratrol and related hydroxyl stilbenes. Planta Med. 65: 266-268 (1999) https://doi.org/10.1055/s-2006-960773
  31. Romero-Perez AI, Ibern-Gomez M, Lamuela-Raventos RM, de la Torre-Boronat MC. Piceid, the major resveratrol derivative in grape juices. J. Agr. Food Chem. 47: 1533-1536 (1999) https://doi.org/10.1021/jf981024g
  32. Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z. Glycosylation of resveratrol protects it from enzymic oxidation. Biochem. J. 374: 157-163 (2003) https://doi.org/10.1042/BJ20030141
  33. Su L, David M. Distinct mechanisms of STAT phosphorylation via the interferon-alpha/beta receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. J. Biol. Chem. 275: 12661-12666 (2000) https://doi.org/10.1074/jbc.275.17.12661
  34. Stephens JM, Morrison RF, Pilch PF. The expression and regulation of STATs during 3T3-L1 adipocyte differentiation. J. Biol. Chem. 271: 10441-10444 (1996) https://doi.org/10.1074/jbc.271.18.10441
  35. Deng J, Hua K, Lesser SS, Harp JB. Activation of signal transducer and activator of transcription-3 during proliferative phases of 3T3- L1 adipogenesis. Endocrinology 141: 2370-2376 (2000) https://doi.org/10.1210/en.141.7.2370
  36. Cernkovich ER, Deng J, Bond MC, Combs TP, Harp JB. Adiposespecific disruption of signal transducer and activator of transcription 3 increases body weight and adiposity. Endocrinology 149: 1581- 1590 (2008) https://doi.org/10.1210/en.2007-1148
  37. Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaga K, Matsuzawa Y. Enhanced expression of PAI-1 in visceral fat: Possible contributor to vascular disease in obesity. Nat. Med. 2: 800-803 (1996) https://doi.org/10.1038/nm0796-800