Anti-inflammatory Effects of Phytochemicals Having Michael Addition Acceptors by the Modulation of Toll-like Receptor Signaling Pathways

Michael addition acceptor 그룹을 가지고 있는 phytochemicals의 toll-like receptor 신호전달체계 조절을 통한 항염증 효과

  • Youn, Hyung-Sun (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • 윤형선 (순천향대학교 의료과학대학 임상병리학과)
  • Published : 2009.10.31

Abstract

Toll-like receptors (TLRs) play a critical role in the induction of innate immune responses that are essential for host defense against invading microbial pathogens. In general, TLRs have two major downstream signaling pathways, namely MyD88- and TRIF-dependent pathways, leading to the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and interferon regulatory factor 3 (IRF3) and the expression of inflammatory mediators. TLR4 dimerization is required for the activation of downstream signaling pathways and may be one of the first lines of regulation in activating TLR-mediated signaling pathways. In this paper, the molecular targets of curcumin, 6-shogaol, and cinnamaldehyde in TLR signaling pathways will be discussed. Curcumin, 6-shogaol, and cinnamaldehyde with ${\alpha},{\beta}$-unsaturated carbonyl groups inhibit the dimerization of TLR4 induced by lipopolysaccharide, resulting in the downregulation of NF-${\kappa}B$ and IRF3. These results suggest that phytochemicals with the structural motif conferring Michael addition inhibit TLR4 dimerization, suggesting a novel mechanism for the anti-inflammatory activity of phytochemicals.

TLRs는 여러 병원균들이 가지고 있는 PAMPs를 인식해서, 선천성 면역 반응을 유도하는 중요한 역할을 한다. TLR4의 이합체 형성은 신호전달 체계의 활성화와 뒤이어 발생하는 선천성 면역 반응을 유도하기 위해서 최초로 일어나는 반응으로 알려져 있다. 우리가 먹는 식품 중에는 항염증 효과가 있다고 널리 알려져 있는 phytochemicals이 포함되어 있다. 특히 ${\alpha},{\beta}$-unsaturated carbonyl group을 가지고 있는 curcumin, 6-shogaol, 그리고 cinnamaldehyde는 Michael addition 반응에 의해서 LPS에 의해서 유도된 TLR4의 이합체 형성을 억제시켜, 전사요소 NF-${\kappa}B$와 IRF3 활성화 및 그것들에 의해서 조절되는 타깃 유전자들을 억제시킨다. 이러한 결과는 ${\alpha},{\beta}$-unsaturated carbonyl group을 가지고 있는 curcumin, 6-shogaol, 그리고 cinnamaldehyde의 항염증 효능에 대한 새로운 기전을 설명해 주는 것이라 할 수 있겠다.

Keywords

References

  1. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24: 353-389 (2006) https://doi.org/10.1146/annurev.immunol.24.021605.090552
  2. Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14 (2005)
  3. Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135-145 (2001) https://doi.org/10.1038/35100529
  4. O'Neill LA. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol. 25: 687-693 (2004) https://doi.org/10.1016/j.it.2004.10.005
  5. Vogel SN, Fitzgerald KA, Fenton MJ. TLRs: Differential adaptor utilization by toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv. 3: 466-477 (2003) https://doi.org/10.1124/mi.3.8.466
  6. Hajjar AM, O'Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166: 15-19 (2001)
  7. Kawai T, Akira S. Pathogen recognition with toll-like receptors. Curr. Opin. Immunol. 17: 338-344 (2005) https://doi.org/10.1016/j.coi.2005.02.007
  8. Kawai T, Akira S. Signaling to NF-$\kappa$B by toll-like receptors. Trends Mol. Med. 13:460-469 (2007) https://doi.org/10.1016/j.molmed.2007.09.002
  9. Karin M, Greten FR. NF-$\kappa$B: Linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5: 749-759 (2005) https://doi.org/10.1038/nri1703
  10. Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F, Verma IM. Enhanced NF-$\kappa$B activation and cellular function in macrophages lacking I$\kappa$B kinase 1 (IKK1). P. Natl. Acad. Sci. USA 102: 12425-12430 (2005) https://doi.org/10.1073/pnas.0505997102
  11. Hayden MS, West AP, Ghosh S. NF-$\kappa$B and the immune response. Oncogene 25: 6758-6780 (2006) https://doi.org/10.1038/sj.onc.1209943
  12. Rhee SH, Hwang D. Murine toll-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF $\kappa$B and expression of the inducible cyclooxygenase. J. Biol. Chem. 275: 34035-34040 (2000) https://doi.org/10.1074/jbc.M007386200
  13. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-$\beta$ (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-$\kappa$B and IFN-regulatory factor-3, in the toll-like receptor signaling. J. Immunol. 171: 4304-4310 (2003)
  14. Lin R, Heylbroeck C, Genin P, Pitha PM, Hiscott J. Essential role of interferon regulatory factor 3 in direct activation of RANTES chemokine transcription. Mol. Cell. Biol. 19: 959-966 (1999)
  15. Schafer SL, Lin R, Moore PA, Hiscott J, Pitha PM. Regulation of type I interferon gene expression by interferon regulatory factor- 3. J. Biol. Chem. 273: 2714-2720 (1998) https://doi.org/10.1074/jbc.273.5.2714
  16. Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity 25: 373-381 (2006) https://doi.org/10.1016/j.immuni.2006.08.007
  17. Wietek C, O'Neill LA. Diversity and regulation in the NF-$\kappa$B system. Trends Biochem. Sci. 32: 311-319 (2007) https://doi.org/10.1016/j.tibs.2007.05.003
  18. Honda K, Taniguchi T. IRFs: master regulators of signalling by toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6: 644-658 (2006) https://doi.org/10.1038/nri1900
  19. Hemmi H, Takeuchi O, Sato S, Yamamoto M, Kaisho T, Sanjo H, Kawai T, Hoshino K, Takeda K, Akira S. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199: 1641-1650 (2004) https://doi.org/10.1084/jem.20040520
  20. McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. P. Natl. Acad. Sci. USA 101: 233-238 (2004) https://doi.org/10.1073/pnas.2237236100
  21. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. RIP1 is an essential mediator of toll-like receptor 3-induced NF-$\kappa$B activation. Nat. Immunol. 5: 503-507 (2004) https://doi.org/10.1038/ni1061
  22. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4: 491-496 (2003) https://doi.org/10.1038/ni921
  23. Pan MH, Lin-Shiau SY, Lin JK. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of I$\kappa$B kinase and NF$\kappa$B activation in macrophages. Biochem. Pharmacol. 60: 1665- 1676 (2000) https://doi.org/10.1016/S0006-2952(00)00489-5
  24. Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB. Curcumin blocks cytokine-mediated NF-$\kappa$B activation and proinflammatory gene expression by inhibiting inhibitory factor I-$\kappa$B kinase activity. J. Immunol. 163: 3474-3483 (1999)
  25. Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem. Bioph. Res. Co. 206: 533-540 (1995) https://doi.org/10.1006/bbrc.1995.1076
  26. Kang G, Kong PJ, Yuh YJ, Lim SY, Yim SV, Chun W, Kim SS. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase- 2 expression by inhibiting activator protein 1 and nuclear factor κβ bindings in BV2 microglial cells. J. Pharmacol. Sci. 94: 325- 328 (2004) https://doi.org/10.1254/jphs.94.325
  27. Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of toll-like receptor 4 by curcumin. Biochem. Pharmacol. 72: 62-69 (2006) https://doi.org/10.1016/j.bcp.2006.03.022
  28. Tao X, Xu Y, Zheng Y, Beg AA, Tong L. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem. Bioph. Res. Co. 299: 216-221 (2002) https://doi.org/10.1016/S0006-291X(02)02581-0
  29. Dinkova-Kostova AT, Massiah MA, Bozak RE, Hicks RJ, Talalay P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. P. Natl. Acad. Sci. USA 98: 3404-3409 (2001) https://doi.org/10.1073/pnas.051632198
  30. Siedle B, Garcia-Pineres AJ, Murillo R, Schulte-Monting J, Castro V, Rungeler P, Klaas CA, Da Costa FB, Kisiel W, Merfort I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor $NF-_KB$. J. Med. Chem. 47: 6042-6054 (2004) https://doi.org/10.1021/jm049937r
  31. Afzal M, Al-Hadidi D, Menon M, Pesek J, Dhami MS. Ginger: An ethnomedical, chemical, and pharmacological review. Drug Metabol. Drug Interact. 18: 159-190 (2001)
  32. Chang CP, Chang JY, Wang FY, Chang JG. The effect of Chinese medicinal herb Zingiberis rhizoma extract on cytokine secretion by human peripheral blood mononuclear cells. J. Ethnopharmacol. 48: 13-19 (1995) https://doi.org/10.1016/0378-8741(95)01275-I
  33. Ippoushi K, Azuma K, Ito H, Horie H, Higashio H. [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci. 73: 3427-3437 (2003) https://doi.org/10.1016/j.lfs.2003.06.022
  34. Thomson M, Al-Qattan KK, Al-Sawan SM, Alnaqeeb MA, KhanI, Ali M. The use of ginger (Zingiber officinale Rosc.) as apotential anti-inflammatory and antithrombotic agent. Prostag. Leukotr. Ess. 67: 475-478 (2002) https://doi.org/10.1054/plef.2002.0441
  35. Surh YJ. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: A short review. Food Chem. Toxicol. 40: 1091-1097 (2002) https://doi.org/10.1016/S0278-6915(02)00037-6
  36. Altman RD, Marcussen KC. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum. 44: 2531- 2538 (2001) https://doi.org/10.1002/1529-0131(200111)44:11<2531::AID-ART433>3.0.CO;2-J
  37. Kiuchi F, Iwakami S, Shibuya M, Hanaoka F, Sankawa U. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Chem. Pharm. Bull. 40: 387-391 (1992) https://doi.org/10.1248/cpb.40.387
  38. Tjendraputra E, Tran VH, Liu-Brennan D, Roufogalis BD, Duke CC. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg. Chem. 29: 156- 163 (2001) https://doi.org/10.1006/bioo.2001.1208
  39. Kim SO, Chun KS, Kundu JK, Surh YJ. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-$\kappa$B and p38 MAPK in mouse skin. Biofactors 21: 27-31 (2004) https://doi.org/10.1002/biof.552210107
  40. Kim JJ, Ahn SI, Lee JS, Yun SM, Lee MY, Youn HS. Suppression of the expression of cyclooxygenase-2 induced by toll-like receptor 2, 3, and 4 agonists by 6-shogaol. Korean J. Food Sci. Technol. 40: 332-336 (2008)
  41. Ahn SI, Lee JK, Youn HS. Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol. Mol. Cells 27: 211-215 (2009) https://doi.org/10.1007/s10059-009-0026-y
  42. Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am. J. Chin. Med. 34: 511-522 (2006) https://doi.org/10.1142/S0192415X06004041
  43. Youn HS, Lee JK, Choi YJ, Saitoh SI, Miyake K, Hwang DH, Lee JY. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem. Pharmacol. 75: 494-502 (2008) https://doi.org/10.1016/j.bcp.2007.08.033