DOI QR코드

DOI QR Code

Effect of Oxygen on the Microstructure and Mechanical Properties of Cr-O-N Coatings

Oxygen 함량에 따른 Cr-O-N 코팅막의 미세구조 및 기계적 특성에 관한 연구

  • Yun, Jun-Seo (School of Materials Science and Engineering, Pusan National University) ;
  • Kwon, Se-Hun (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Park, In-Wook (Advanced Coatings and Surface Engineering Laboratory (ACSEL), Colorado School of Mines) ;
  • Lee, Jeong-Du (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Kwang-Ho (School of Materials Science and Engineering, Pusan National University)
  • 윤준서 (부산대학교 재료공학부) ;
  • 권세훈 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터) ;
  • 박인욱 (콜로라도 광업대학교 차세대 코팅 및 표면처리 연구실) ;
  • 이정두 (부산대학교 재료공학부) ;
  • 김광호 (부산대학교 재료공학부)
  • Published : 2009.10.31

Abstract

Cr-O-N coatings having different oxygen contents were deposited on Si wafer and SUS 304 substrates by an arc ion plating technique using Cr target in $Ar/O_2/N_2$ gaseous atmosphere. As increasing oxygen content in the coating, the microstructure of Cr-O-N coating changed from polycrystalline having NaCl structure to amorphous structure. Further increase of oxygen content resulted in phase transformation from amorphous to rhombohedral structure. From the variations of d value and average grain size, it was revealed that the maximum solubility of oxygen in Cr-O-N coating was about 21 at.%. And the maximum micro-hardness of 2751HK was obtained in this composition. The lowest friction coefficient was measured in the coating having 34.8 at.% of oxygen. However, more narrow width of wear track was found in the coating having 30.1 at.% of oxygen.

Keywords

References

  1. G. S. Kim, S. Y. Lee, J. H. Hahn, Surf. Coat. Technol., 193 (2005) 213 https://doi.org/10.1016/j.surfcoat.2004.07.021
  2. J. Creus, H. Indriss, H. Mazille, F. Sanchette, P. Jacquot, Surf. Coat. Technol., 107 (1998) 183 https://doi.org/10.1016/S0257-8972(98)00646-X
  3. G. T. Liu, J. G. Duh, K .H. Chung, J. H. Wang, Surf. Coat. Technol., 200 (2005) 2100 https://doi.org/10.1016/j.surfcoat.2004.07.124
  4. C. Rebholz, H. Ziegele, A. Leyland, A. Mattew, Surf. Coat. Technol., 115 (1999) 222 https://doi.org/10.1016/S0257-8972(99)00240-6
  5. J. Bujak, J. Walcowicz, J. Kusi ski, Surf. Coat. Technol., 180-181 (2004) 150 https://doi.org/10.1016/j.surfcoat.2003.10.058
  6. K. H. Kim, D. S. Han, S. K. Kim, Surf. Coat. Technol., 163-164 (2003) 605 https://doi.org/10.1016/S0257-8972(02)00653-9
  7. S. Boelens, H. Veltrop, Surf. Coat. Technol., 33 (1987) 63 https://doi.org/10.1016/0257-8972(87)90177-0
  8. P. Hones, R. Sanjines, F. Levy, Thin Solid Films, 332 (1998) 240 https://doi.org/10.1016/S0040-6090(98)00992-4
  9. K. H. Lee, C. H. Park, T. S. Yoon, J. J. Lee, Thin Solid Films, 385 (2001) 167 https://doi.org/10.1016/S0040-6090(00)01911-8
  10. E. Martinez, R. Sanjines, O. Banakh, F. Levy, Thin Solid Films, 447-448 (2004) 332 https://doi.org/10.1016/S0040-6090(03)01113-1
  11. T. Suzuki, J. Inoue, H. Saito, M. Hirai, H. Suematsu, W. Jiang, K. Yatsui, Thin Solid Films, 515 (2006) 2161 https://doi.org/10.1016/j.tsf.2006.05.007
  12. S. Collard, H. Kupfer, G. Hecht, W. Hoyer, H.Moussaoui, Surf. Coat. Technol., 112 (1999) 181 https://doi.org/10.1016/S0257-8972(98)00752-X
  13. T. Suzuki, J. Inoue, H. Saito, M. Hirai, H. Suematsu, W. Jiang, K. Yatsui, Thin Solid Films, 515m (2006) 2161
  14. L. Castaldi, D. Kurapov, A. Reiter, V. Shklover, P. Schwaller, J. Patscheider, Surf. Coat. Technol., 203 (2008) 545 https://doi.org/10.1016/j.surfcoat.2008.05.018
  15. C. Gautier, J. Machet, Surf. Coat. Technol., 94-95 (1997) 422 https://doi.org/10.1016/S0257-8972(97)00272-7
  16. K. H. Kim, D. S. Han, S. K. Kim, Surf. Coat. Technol., 163-164 (2003) 605 https://doi.org/10.1016/S0257-8972(02)00653-9
  17. S. Y. Yoon, S. R. Choi, M. H. Lee, W. H. Kim, J. Kor. Inst. Surf. Eng., 36 (2003) 2
  18. J. H. Park, W. S. Chung, Y. R. Cho, K. H. Kim, Surf. Coat. Technol., 188-189 (2004) 425 https://doi.org/10.1016/j.surfcoat.2004.08.045
  19. Y. S. Hong, S. H. Kwon, K. H. Kim, J. Kor. Inst. Surf. Eng., 42 (2009) 73 https://doi.org/10.5695/JKISE.2009.42.2.073
  20. D. Gryaznov, J. Fleig, J. Maier, Solid State Ionics, 177 (2006) 1538
  21. H. C. Barshilia, N. Selvakumar, B. Deepthi, K. S. Rajam, Surf. Coat. Technol., 201 (2006) 2193 https://doi.org/10.1016/j.surfcoat.2006.03.037
  22. B. Navinsek, P. Panjan, A. Cvelbar, Surf. Coat. Technol., 74-75 (1995) 155 https://doi.org/10.1016/0257-8972(95)08214-X
  23. W. Xiaozhi, W. Shzofeng, Z. Hull, Cent. Eur. J. Phys., 6 (2008) 440 https://doi.org/10.2478/s11534-008-0053-x
  24. P. Kratochvil, P. lukac, B. Sprusil, Czech. J. Physics, B23 (1973) 621
  25. W. O. Milligan, D. F. Mullica, H. O. Perkins, C. K. C. Lok, Acta Cryst., A40 (1984) 264
  26. M. Kalin, B. Hockey, S. Jahanmir, J. Mater. Res., 18 (2003) 27 https://doi.org/10.1557/JMR.2003.0005
  27. D. Y. Wang, M. C. Chiu, Surf. Coat. Technol., 137 (2001) 164 https://doi.org/10.1016/S0257-8972(00)01109-9
  28. A. Matthews, S. Franklin, Holmberg, J. Phys. D: Appl. Phys., 40 (2007) 5463 https://doi.org/10.1088/0022-3727/40/18/S07
  29. H.-H. Jin, J. W. Kim, K. H. Kim, S.-Y. Yoon, J. Kor. Phys. Soc., 42 (2005) 88
  30. Q. Wang, I. W. Park, K. H. Kim, J. Vac. Sci. Technol., A26 (2008) 5