DOI QR코드

DOI QR Code

Biochemical Characteristics and Function of a Fucosyltransferase Encoded by ste7 in Ebosin Biosynthesis of Streptomyces sp. 139

  • Chang, Ming (Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Bai, Li-Ping (Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Shan, Jung-Jie (Institute of Pharmacology and Toxicology) ;
  • Jiang, Rong (Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Zhang, Yang (Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Guo, Lian-Hong (Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Zhang, Ren (School of Biological Sciences, University of Wollongong) ;
  • Li, Yuan (Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College)
  • Published : 2009.10.31

Abstract

A novel exopolysaccharide named Ebosin was produced by Streptomyces sp. 139, with medicinal activity. Its biosynthesis gene cluster (ste) has been previously identified. For the functional study of the ste7 gene in Ebosin biosynthesis, it was disrupted with a double crossover via homologous recombination. The monosaccharide composition of EPS-7m produced by the mutant strain Streptomyces sp. 139 ($ste7^-$) was found altered from that of Ebosin, with fucose decreasing remarkably. For biochemical characterization of Ste7, the ste7 gene was cloned and expressed in Escherichia coli BL21. With a continuous coupled spectrophotometric assay, Ste7 was demonstrated to have the ability of catalyzing the transfer of fucose specifically from GDP-$\beta$-L-fucose to a fucose acceptor, the lipid carrier located in the cytoplasmic membrane of Streptomyces sp. 139 ($ste7^-$). Therefore, the ste7 gene has been identified to code for a fucosyltransferase, which plays an essential role in the formation of repeating sugars units during Ebosin biosynthesis.

Keywords

References

  1. Barreras, M$\acute{a}$ximo., P. L. Abdian, and L. Ielpi. 2004. Functional characterization of GumK, a membrane-associated beta-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Glycobiology 14: 233-241
  2. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
  3. Bitter, T. and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334 https://doi.org/10.1016/0003-2697(62)90095-7
  4. Chabot, S., H. L. Yu, L. D. Leseleuc, D. Cloutier, M. R. Van Calsteren, M. Lessard, D. Roy, M. Lacroix, and D. Othb. 2001. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-$\gamma$ in mouse splenocytes. Lait 81: 683-697 https://doi.org/10.1051/lait:2001157
  5. Denis, Fran$\c{c}$ois and R. Brzezinski. 1992. A versatile shuttle cosmid vector for use in Escherichia coli and actinomycetes. Gene 111:115-118 https://doi.org/10.1016/0378-1119(92)90611-R
  6. Franco, Oct$\acute{a}$vio L. and D. J. Rigden. 2003. Fold recognition analysis of glycosyltransferase families: Further members of structural superfamilies. Glycobiology 13: 707-712 https://doi.org/10.1093/glycob/cwg098
  7. Gosselin, S., M. Alhussaini, M. B. Streiff, K. Takabayashi, and M. M. Palcic. 1994. A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220: 92-97 https://doi.org/10.1006/abio.1994.1303
  8. Hundle, B. S., D. A. O'Brien, M. Alberti, P. Beyer, and J. E. Hearst. 1992. Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc. Natl. Acad. Sci. U.S.A. 89: 9321-9325 https://doi.org/10.1073/pnas.89.19.9321
  9. Hwang, H. S., S. H. Lee, Y. M. Baek, S. W. Kim, Y. K. Jeong, and J. W. Yun. 2008. Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Appl. Microbiol. Biotechnol. 78: 419-429 https://doi.org/10.1007/s00253-007-1329-6
  10. Jing, C., W. Jianbo, L. Yuan, J. Rong, and L. Baoyi. 2003. A new IL-1 receptor inhibitor 139A: Fermentation, isolation, physicochemical properties and structure. J. Antibiot. (Tokyo) 56: 87-90 https://doi.org/10.7164/antibiotics.56.87
  11. Joo, J. H. and J. W. Yun. 2005. Structural and molecular characterization of extracellular polysaccharides produced by a new fungal strain, Trichoderma erinaceum DG-312. J. Microbiol. Biotechnol. 15: 1250-1257
  12. Jung, S. W., W. J. Kim, K. G. Lee, C. W. Kim, and W. S. Noh. 2008. Fermentation characteristics of exopolysaccharideproducing lactic acid bacteria from sourdough and assessment of the isolates for industrial potential. J. Microbiol. Biotechnol. 18: 1266-1273
  13. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich
  14. Kitazawa, H., T. Toba, T. Itoh, N. Kumano, S. Adachi, and T. Yamaguchi. 1991. Antitumoral activity of slime-forming, encapsulated Lactococcus lactis subsp. cremoris isolated from Scandinavian ropy sour milk, 'viili'. Anim. Sci. Technol. 62:277-283 https://doi.org/10.1016/S0377-8401(96)90030-9
  15. Li, M., J. Shen, X. W. Liu, J. Shao, W. Yi, C. S. Chow, and P. G. Wang. 2008. Identification of a new $\alpha$1,2-fucosyltransferase involved in O-antigen biosynthesis of Escherichia coli O86:B7 and formation of H-type 3 blood group antigen. 47: 11590-11597 https://doi.org/10.1021/bi801067s
  16. Lu, W., C. Leimkuhler, M. Oberth$\ddot{u}$r, D. Kahne, and C. T. Walsh. 2004. AknK is an L-2-deoxyfucosyltransferase in the biosynthesis of the anthracycline aclacinomycin A. Biochemistry 43: 4548-4558 https://doi.org/10.1021/bi035945i
  17. MacNeil, D. J., K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68 https://doi.org/10.1016/0378-1119(92)90603-M
  18. Nakajima, H., Y. Suzuki, H. Kaizu, and T. Hirota. 1992. Cholesterol lowering activity of ropy fermented milk. J. Food Sci. 57:1327-1329 https://doi.org/10.1111/j.1365-2621.1992.tb06848.x
  19. Norling, B., E. Zak, B. Andersson, and H. Pakrasi. 1998. 2Disolation of pure plasma and thylakoid membranes from the Cyanobacterium synechocystis sp. PCC 6803. FEBS Lett. 436:189-192 https://doi.org/10.1016/S0014-5793(98)01123-5
  20. Palcic, M. M. and K. Sujino. 2001. Assays for glycosyltransferases. Trends Glycosci. Glyc. 13: 361-370 https://doi.org/10.4052/tigg.13.361
  21. Qasba, P. K., B. Ramakrishnan, and E. Boeggeman. 2005. Substrate-induced conformational changes in glycosyltransferases. Trends Biochem. Sci. 30: 53-62 https://doi.org/10.1016/j.tibs.2004.11.005
  22. Stingele, F., J. W. Newell, and J. R. Neeser. 1999. Unraveling the function of glycosyltransferases in Streptococcus thermophilus Sfi6. J. Bacteriol. 181: 6354-6360
  23. Sun, Q. L., L. Y. Wang, J. J. Shan, R. Jiang, L. H. Guo, Y. Zhang, R. Zhang, and Y. Li. 2007. Knockout of the gene (ste15) encoding a glycosyltransferase and its function in biosynthesis of exopolysaccharide in Streptomyces sp. 139. Arch. Microbiol. 188: 333-340 https://doi.org/10.1007/s00203-007-0253-6
  24. van Kranenburg, R., II. van Swam, J. D. Marugg, M. Kleerebezem, and W. M. de Vos. 1999. Exopolysaccharide biosynthesis in Lactococcus lactis Nizo B40: Functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J. Bacteriol. 181: 338-340
  25. Wang, L. Y., S. T. Li, and Y. Li. 2003. Identification and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces. FEMS Microbiol. Lett. 220: 21-27 https://doi.org/10.1016/S0378-1097(03)00044-2
  26. Wu, Q., J. B. Wu, and Y. Li. 1999. Screening, purification and pharmacological study on a IL-1R antagonist - Streptomyces sp.139. Chinese J. Antibiot. 26: 401-403
  27. Xu, G., W. Chang, and L. H. Fei. 1998. Composition analysis of carbohydrate released from bovine submaxillary mucin by capillary gas chromatography. Chinese J. Anal. Chem. 26: 922-926
  28. Zhang, T., L. Wang, G. Xu, Y. Chen, Y. Zhang, and Y. Li. 2006. Disruption of the ste22 gene encoding a glycosyltransferase and its function in biosynthesis of Ebosin in Streptomyces sp. 139. Curr. Microbiol. 52: 55-59 https://doi.org/10.1007/s00284-005-0096-9

Cited by

  1. Identification and characterization of a novel spermidine/spermine acetyltransferase encoded by gene ste26 from Streptomyces sp. 139 vol.93, pp.9, 2009, https://doi.org/10.1016/j.biochi.2011.04.014
  2. Identification and Functional Analysis of the Chain Length Determinant Gene ste8 Involved in the Biosynthesis of Ebosin by Streptomyces sp. 139 vol.23, pp.11, 2009, https://doi.org/10.4014/jmb.1305.05035