Synthesis and Properties of Energetic Thermoplastic Polyurethane included Glycidyl Azide Polymer

Glycidyl Azide Polymer를 포함하는 에너지화 열가소성 폴리우레탄의 합성 및 성질

  • Published : 2009.10.05

Abstract

Thermoplastic polyurethane elastomer(PU-TPE) and energetic thermoplastic polyurethane Elastomer(E-PU-TPE) were prepared from Hexamethylene diisocyanate(HDI), 1,4-BD/AA ester polyol and glycidyl azide polymer(GAP-2400) as an energetic material by the addition polymerization. The PU-TPE and E-PU-TPE were characterized by FT-IR and GPC. Viscometer, DSC and UTM were used to investigate the viscose behavior with a various solvent, thermal properties and mechanical properties of PU-TPE and E-PU-TPE, which are of potential interest for the development of high performance binder of energetic solid propellants. It was found that $M_w$ of PU-TPE and E-PU-TPEs are over 100,000 and decreased with increase of GAP-2400 contents. $T_m$ and ${\Delta}H$ as thermal properties decreased and also tensile strength and elongation at break as mechanical properties decreased with increase of GAP-2400 contents.

Keywords

References

  1. Simpson, R. L., 'Thermal Characterization of Glycidyl Azide Polymer(GAP) and GAP-based Binders for Composite Propellants', Propel. Explos. Pyrotech., Vol. 22, p. 249, 1996 https://doi.org/10.1002/prep.19970220502
  2. Frankel, M. B., Grant, L. R., Flanagan, J. E., 'Historical Development of Glycidyl Azide Polymer', J. Propuls. Power, Vol. 8, p. 560, 1992 https://doi.org/10.2514/3.23514
  3. Kubota, N., Yano, Y., Miyata, K., 'Energetic Solid Fuels for Ducted Rockets(II)', Propel. Explos. Pyrotech., Vol. 16, p. 287, 1991 https://doi.org/10.1002/prep.19910160606
  4. Wahner, R. I., etc., 'Glycidyl Azide Polymer and Method of Preparation', U. S. Patent, 4937361, 1990
  5. Kubota, N., 'Combustion of Energetic Azide Polymers', J. Propuls Power, Vol. 11, p. 677, 1995 https://doi.org/10.2514/3.23893
  6. Chen, J. K., Brill, T. B., 'Thermal Decomposition of Energetic Materials Kinetcs and Near-surface Products of Azide Polymers AMMO, BAMO, and GAP in Simulated Combustion', Combust. Flame, Vol. 87, p. 157, 1991 https://doi.org/10.1016/0010-2180(91)90166-9
  7. Agrawal, J. P., etc, 'High-speed Photographic Study of the Impact Response of Ammonium Dinitramide and Glycidyl Azide Polymer', J. Propuls. Power, Vol. 13, p. 463, 1997 https://doi.org/10.2514/2.5207
  8. Sutton, G. P., Rocket Propulsion Elements, 6'th ed., Wiley, New York, 1992
  9. Kuo, K. K., summerfield, M., Fundamentals of Solid-Propellent Combustion, American Institute of Astronautics and Auronotics, New York, Vol. 90, 1984
  10. Desilets, S., etc, $^{13}C$-NMR Spectroscopy Study of Polyurethane Obtained from Azide Hydroxylterminated Polymer Cured with Isophorone Diisocyanate(IPDI)', J. Appl. Polym. Sci. A, Vol. 35, p. 2991, 1997 https://doi.org/10.1002/(SICI)1099-0518(199710)35:14<2991::AID-POLA20>3.0.CO;2-D
  11. Selim, K., etc, 'Thermal Characterization of Glycidyl Azide Polymer(GAP) and GAP-based Binders for Composite Propellants', J. Appl. Polym. Sci., Vol. 77, p. 538, 2000 https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<538::AID-APP9>3.0.CO;2-X
  12. Shen, S. M., etc, 'Thermal Characteristics of GAP, GAP/BDNPA/BDNPF and PEG/BDNPA/BDNPF and the Energetic Composites Thereof', Thermochimica Acta, Vol. 180, p. 251, 1991 https://doi.org/10.1016/0040-6031(91)80395-Y
  13. Oyumi, Y., 'Thermal Decomposition of Azide Polymer', Propel. Explos. Pyrotech., Vol. 17, p. 226, 1992 https://doi.org/10.1002/prep.19920170503
  14. Jones, D. E. G., etc, 'Thermal Analysis of GAPTRIOL, an Energetic Azide Polymer', Thermochimica Acta, Vol. 242, p. 187, 1994 https://doi.org/10.1016/0040-6031(94)85020-8
  15. Shen, S. M., etc, 'Thermal Decomposition of Cured GAP-AP Propellants Containing Catocene', Thermochimica Acta, Vol. 216, p. 255, 1993 https://doi.org/10.1016/0040-6031(93)80396-R