DOI QR코드

DOI QR Code

Short-term Water Demand Forecasting Algorithm Based on Kalman Filtering with Data Mining

데이터 마이닝과 칼만필터링에 기반한 단기 물 수요예측 알고리즘

  • Published : 2009.10.01

Abstract

This paper proposes a short-term water demand forecasting algorithm based on kalman filtering with data mining for sustainable water supply and effective energy saving. The proposed algorithm utilizes a mining method of water supply data and a decision tree method with special days like Chuseok. And the parameters of MLAR (Multi Linear Auto Regression) model are estimated by Kalman filtering algorithm. Thus, we can achieve the practicality of the proposed forecasting algorithm through the good results applied to actual operation data.

Keywords

References

  1. 송경빈, 하성관, '단기 수요예측 알고리즘,' 대한전기학회, vol. 53A, no. 10, pp. 529-535, 2004 https://doi.org/10.5302/J.ICROS.2009.15.10.1056
  2. S. Chenthur Pandian, K. Duraiswamy, C. Chistober Asir Rajan, and N. Kanagaraj, "Fuzzy approach for short term load forecasting," Electric power systems research, vol. 76, pp. 541-548, 2006 https://doi.org/10.1016/j.epsr.2005.09.018
  3. P. MandaI, T. Senjyu, N. Urasaki, and T. Funabashi, "A neural network based several-hour-ahead electric load forecasting using similar days approach," Electrical power & energy system, vol. 28, pp. 367-373, 2006 https://doi.org/10.1016/j.ijepes.2005.12.007
  4. D. Srinivasan, "Energy demand prediction using GMDH networks," Neurocomputing, vol. 72, pp. 625-629, 2008 https://doi.org/10.1016/j.neucom.2008.08.006
  5. 양승원, 박근준, '주택수요 예측을 위한 주택량과 상수도보급률의 상관성 분석,' 한국건설관리학회, 제6권 제2호, pp. 61-68, 2005
  6. H. S. Hwang, "Fuzzy GMDH-type neural network model and its application to forecasting of mobile communication," Computer & Industrial Engineering, vol. 50, pp. 450-457, 2006 https://doi.org/10.1016/j.cie.2005.08.005
  7. J. L. Torres, A. Garcia, M. De BIas, and A. De Francisco, "Forecast of hourly average wind speed with ARMA models in Navarre(Spain)," Solar Energy, vol. 79, pp. 65-77, 2005 https://doi.org/10.1016/j.solener.2004.09.013
  8. 김신걸, 변신숙, 김영상, 구자용, '시스템 다이내믹스법을 이용한 서울특별시의 장기 물수요예측,' 환경공학회, 제20권 제2호, pp. 187-198, 2006
  9. H. M. Al-Hama and S. A. Soliman, "Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model," Electric power systems research, no. 68, pp. 47-59, 2004 https://doi.org/10.1016/S0378-7796(03)00150-0
  10. 이동철, 홍연찬, 'GMDH를 이용한 전력 수요 예측 알고리즘 개발,' 퍼지 및 지능시스템학회, 제13권 제3호, pp. 360-365, 2003
  11. 한태환, 남의석 '칼만필터의 적응형모델 기법을 이용한 광역상수도 시스템의 수요예측 모델 개발,' 한국조명전기설비학회, 제15권 제2호, pp. 38-48, 2001
  12. 남의석, 우천희, 김학배, '광역상수도의 최적운영 및 제어를 위한 수운영시스템 개발,' 제어.자동화.시스템공학회, 제9권 제7권, pp. 489-497, 2003
  13. J. Bougadis, K. Adamowski, and R Diduch, "Short-term municipal water demand forecasting," Hydrological Processes, vol. 19, pp. 137-148, 2005 https://doi.org/10.1002/hyp.5763
  14. S. L. Zhou, T. A. McMahon, A. Walton, and J. Lewis, "Forecasting daily urban water demand: a case study of melbourne," Journal of Hydrology, vol. 236, pp. 153-164, 2000 https://doi.org/10.1016/S0022-1694(00)00287-0
  15. R E. Kalman, "A new approach to linear filtering and prediction problems," Transaction of the ASME-Journal of Basic Engineering, pp. 35-45, 1960 https://doi.org/10.1115/1.3662552
  16. P.-N. Tan, "Introduction to data mining," AddisonWesley, 2006

Cited by

  1. Abnormal data refinement and error percentage correction methods for effective short-term hourly water demand forecasting vol.12, pp.6, 2014, https://doi.org/10.1007/s12555-014-0001-z