References
- Chang, C. C. and Lin, C. J. (2001). LIBSVM : a library for support vector machines. available at http://www.csie.ntu.edu.tw/~cjin/libsvm
- Cook, D. and Swayne, D. (2007). Interactive and Dynamic Graphics for Data Analysis, Springer, New York
- Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York
- Huh, M. H. (2009). Visualizing multi-variable prediction functions by segmented k-CPG's, Commu-nications of the Korean Statistical Society, 16, 185-193 https://doi.org/10.5351/CKSS.2009.16.1.185
- Huh, M. H. and Lee, Y. G. (2008). Simple graphs for complex prediction functions, Communications of the Korean Statistical Society, 15, 343-351 https://doi.org/10.5351/CKSS.2008.15.3.343
- Platt, J. (2000). Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in Large Margin Classifiers, Edited by A. Smola, P. Bartlett, B. Scholkopf and D. Dchuurmans. Cambridge, MA
- Vapnik, V. N. (1999). The Nature of Statistical Learning Theory, Springer, New York
- Wang, J., Shen, X. and Liu, Y. (2008). Probability estimation for large-margin classifiers, Biometrika, 95, 149-167 https://doi.org/10.1093/biomet/asm077
- Wickham, H., Caragea, D. and Cook, D. (2006). Exploring high-dimensional classification boundaries, Unpublished manuscript
- Wu, T. F., Lin, C. J. and Weng, R. C. (2004). Probability estimates for multi-class classification by pairwise coupling, Journal of Machine Learning Research, 5, 975-1005
Cited by
- Biplots of Multivariate Data Guided by Linear and/or Logistic Regression vol.20, pp.2, 2013, https://doi.org/10.5351/CSAM.2013.20.2.129