참고문헌
- Beckage, N.E. 2008, Insect immunology. 348 pp. Academic Press, New York
-
Dennis, E.A. 1994, Diversity of group types, regulation, and function of phospholipase
$A_{2}$ J. BioI. Chem. 269: 13057-13060 - Dennis, E.A. 1997, The growing phospholipase A2 superfamily of signal transduction enzymes, Trends. Biochem. Sci. 22: 1-2 https://doi.org/10.1016/S0968-0004(96)20031-3
- Dionne, M.S., L.N. Pham, M. Shirasu-Hiza and D.S. Schneider. 2006, Akt and FOXO dysregulation contribute to infectioninduced wasting in Drosophila, Curr. BioI. 16: 1977-1985 https://doi.org/10.1016/j.cub.2006.08.052
- Dunphy, G.B. and 1.M. Webster. 1984, Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella, J. Insect Physiol. 30: 883-889 https://doi.org/10.1016/0022-1910(84)90063-5
- Dunphy, G.B. and J.M. Webster. 1991, Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella., J Invertebr. Pathol. 58: 40-51 https://doi.org/10.1016/0022-2011(91)90160-R
- Ferre, 1. and J. Van Rie. 2002, Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol. 47: 501-533 https://doi.org/10.1146/annurev.ento.47.091201.145234
- ffrench-Constant, R.H., N. Waterfield and P. Daboffi. 2005, Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill, Elsevier, New York
- Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez. 1999, Resistance to Bacillus thuringiensis CrylAc toxin in three strains of Heliothis virescens proteolytic and SEM study of the larval midgut, Arch. Insect Biochem Physiol. 42: 51-63 https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6
- Forst, S., B. Dowds, N. Boemare and E. Stackebrandt. 1997, Xenorhabdus and Photorhabdus spp.: bugs that kill bugs, Annu.Rev. Microbiol. 51: 47-72 https://doi.org/10.1146/annurev.micro.51.1.47
- Gahan, L.1., F. Gould and D.G. Heckel. 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science 293: 857-860 https://doi.org/10.1126/science.1060949
- Gassmann, AJ., lA. Fabrick, M.S. Sisterson, E.R. Hannon, S.P. Stock, Y. Carriere and B.E. Rabashnik. 2009, Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes, J. Econ. Entomol. 102: 1224-1232 https://doi.org/10.1603/029.102.0348
- Gillespie, lP., M.R. Kanost and T. Trenczek. 1997, Biological mediators of insect immunity, Annu. Rev. Entomol. 42:611-643 https://doi.org/10.1146/annurev.ento.42.1.611
- Haine, E.R., Y. Moret, M.T. Siva-Jothy and 1. Rolff. 2008, Antimicrobial defense and persistent infection in insects, Science 322: 1257-1259 https://doi.org/10.1126/science.1165265
- Harrison, D.A., R. Binari, T.S. Nahreini, M. Gilman and N. Perrimon. 1995, Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects, EMBO J. 14: 2857-2865
- Jacot, A., H. Scheuber, J. Kurtz and M.W. Brinkhof. 2005, Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets, GryUus campestris, Proc. BioI. Sci. 272: 63-69 https://doi.org/10.1098/rspb.2004.2919
- Jenkins, J.I. and D.H. Dean. 2000, Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, eds. by K. Setlow. vol. 22, Plenum, New York
- Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004, Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plantpathogenic bacteria, FEMS Microbiol. Lett. 239: 241-248 https://doi.org/10.1016/j.femsle.2004.08.041
- Jiang, H. and M.R. Kanost. 2000, The clip-domain family of serine proteinases in arthropods, Insect Biochem. Mol. BioI. 30:95-105 https://doi.org/10.1016/S0965-1748(99)00113-7
- Kang, S., S. Han and Y. Kim. 2004, Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337 https://doi.org/10.1016/S1226-8615(08)60235-6
- Kaya, H.K. and R. Gaugler. 1993, Entomopathogenic nematodes, Annu. Rev. Entomol. 38: 181-206 https://doi.org/10.1146/annurev.en.38.010193.001145
- Kim, Y., D. Ji, S. Cho and Y. Park. 2005, Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression, J. Invertebr. Pathol. 89: 258-264 https://doi.org/10.1016/j.jip.2005.05.001
- Kwon, B. and Y. Kim. 2008, Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae), J. Econ. Entomol.101: 36-41 https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
- Kwon, S. and Y. Kim. 2007, Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae).,BioI. Control 42:72-76 https://doi.org/10.1016/j.biocontrol.2007.03.006
- Lavine, M.D. and M.R. Strand. 2002, Insect hemocytes and their role in cellular immune responses, Insect Biochem. Mol. BioI.32: 1237-1242 https://doi.org/10.1016/S0965-1748(02)00086-3
- Luo, H., W.P. Hanratty and C.R. Dearolf. 1995, An amino acid substitution in the Drosophila hop Tum-I Jak kinase causes leukemia-like hematopoietic defects, EMBO J. 14: 1412-1420
- Oppert, B., K.1. Krammer, R.W. Beeman, D. Johnson and W.H. McGaughey. 1997, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. BioI. Chern. 272: 23473-23476
- Park, Y., Y. Kim and Y. Yi. 1999, Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea, J. Asia Pac. Entomol. 2:105-111 https://doi.org/10.1016/S1226-8615(08)60038-2
- Park, Y. and Y. Kim. 2000, Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae, J. Insect Physiol. 46: 1469-1476 https://doi.org/10.1016/S0022-1910(00)00071-8
- Park, Y. and Y. Kim. 2003, Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua, Arch. Insect Biochem. Physiol. 54: 134-142 https://doi.org/10.1002/arch.10108
-
Park, Y. and Y. Kim. 2007, An entomopathogenic bacterium, Xenorhabdus nematophila, induces insect immunosuppression by inhibiting phospholipase A
$A_{2}$ . J. Basic and Life Res. Sci. 7:31-37 - Pham, L.N. and D.S. Schneider. 2008, Evidence for specificity and memory in the insect innate immune response. pp. 97-127, In Insect Immunology, ed. by N.E. Beckage. 348 pp. AcademicPress
- Qiu, P., P. Pan and S. Govind. 1998, A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis, Development 125: 1909-1920
- Rahman, M.M, H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004, Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella, Proc. Natl.Acad. Sci. USA 101: 2696-2699 https://doi.org/10.1073/pnas.0306669101
- Raymond, M. 1985, Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM, Ser. Ent. Med. et Parasitol. 22: 117-121
- SAS Institute, Inc. 1989, SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C
- Silva, C.P., N.R. Waterfield, P.J. Dabom, P. Dean, T. Chilver, C.P. Au, S. Sharma, U. Potter, S.E. Reynolds and R.H. ffrenchConstant. 2002, Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta, Cell. Microbiol. 6:329-339
- Stanley, D. 2000, Eicosanoids in invertebrate signal transduction systems, 277 pp. Princeton University Press, New Jersey
- Stanley, D. 2006, Prostaglandins and other eicosanoids in insects: biological significance, Annu. Rev. Entomol 51: 25-44 https://doi.org/10.1146/annurev.ento.51.110104.151021
- Tabashnik, B.E., R.T. Roush, E.D. Earle and A.M. Shelton. 2000, Resistance to Bt toxins. Science 287: 42
피인용 문헌
- Three metabolites from an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit larval development of Spodoptera exigua (Lepidoptera: Noctuidae) by inhibiting a digestive enzyme, phospholipase A2 vol.18, pp.3, 2011, https://doi.org/10.1111/j.1744-7917.2010.01363.x
- Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media vol.49, pp.4, 2010, https://doi.org/10.5656/KSAE.2010.49.4.409
- Identification, Synthesis, and Biological Activities of Cyclic L-Prolyl-L-Tyrosine vol.56, pp.5, 2012, https://doi.org/10.5012/jkcs.2012.56.5.661
- Structure-activity Analysis of Benzylideneacetone for Effective Control of Plant Pests vol.50, pp.2, 2011, https://doi.org/10.5656/KSAE.2011.04.0.15
- Study on Development of Novel Biopesticides Using Entomopathogenic Bacterial Culture Broth of Xenorhabdus and Photorhabdus vol.49, pp.3, 2010, https://doi.org/10.5656/KSAE.2010.49.3.241
- Insecticidal Effect of Organic Materials of BT, Neem and Matrine Alone and Its Mixture against Major Insect Pests of Organic Chinese cabbage vol.17, pp.3, 2013, https://doi.org/10.7585/kjps.2013.17.3.213
- Benzylideneacetone suppresses both cellular and humoral immune responses of Spodoptera exigua and enhances fungal pathogenicity vol.14, pp.4, 2011, https://doi.org/10.1016/j.aspen.2011.06.001
- Inhibitors Synthesized by Two Entomopathogenic Bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata vol.78, pp.11, 2012, https://doi.org/10.1128/AEM.00301-12