DOI QR코드

DOI QR Code

배추좀나방(Plutella xylostella)에 대한 두 곤충병원세균(Xenorhabdus nematophila K1과 Photorhabdus temperata subsp. temperata ANU101) 배양물질의 Bt 병원성 제고 효과

Two Entomopathogenic Bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 Secrete Factors Enhancing Bt Pathogenicity against the Diamondback Moth, Plutella xylostella

  • 서삼열 (안동대학교 자연과학대학 생명자원과학부 식물의학) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학부 식물의학)
  • Seo, Sam-Yeol (Plant Medicine, School of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Plant Medicine, School of Bioresource Sciences, Andong National University)
  • 발행 : 2009.09.30

초록

Xenorhabdus nematophila (Xn)와 Photorhabdus tempeerata subsp. temperata (Ptt)의 곤충병원세균을 배추좀나방(Plutella xylostella)의 혈강에 주입할 경우 높은 병원력을 보였다. 본 연구는 이들 세균 배양액의 섭식 처리에 따른 배추좀나방에 대한 병원성 유기를 조사하였다. 세균 배양액만을 이용하여 배추좀나방 3령충에 섭식 처리한 결과 뚜렷한 병원성을 유발하지 못하였으나, Bacillus thurigiensis(Bt) 와 혼합 처리하였을 때 높은 Bt 병원성 제고 효과를 나타냈다. 물질 추적을 위해서 이 세균 배양액을 유기 용매를 이용하여 헥산, 에틸아세테이트 및 수용액 추출 분획구로 분리하였다. 대부분이 Bt 상승효과는 에틸아세테이트 추출 분획구에서 나타났다. Thin layer chromatography 분석 결과는 에틸아세테이트 분획구가 대사물질을 포함하고 있으며, 이들이 헥산 또는 수용액 추출 분획구에 포함된 물질과는 상이하다는 것을 나타냈다. 이러한 결과는 이들 곤충병원세균이 Bt 병원성을 제고시키는 물질을 생산하고 배양액으로 분비한다고 제시하고 있다.

Two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata, are known to be potent against the diamondback moth, Plutella xylostella, when the bacteria are injected into the hemocoel. This study investigated any pathogenic effect of their culture broth on P. xylostella by oral administration. Only culture broth of both bacterial species did not give enough pathogenic effects by the oral administration. However, when the culture broth was orally treated together with Bacillus thuringiensis (Bt), both cell-free culture broth significantly enhanced Bt pathogenicity against the 3rd instar larvae of P. xylostella. The culture broth was then fractionated into hexane, ethyl acetate, and aqueous extracts. Most synergistic effect on Bt pathogenicity was found in ethyl acetate extracts of both bacterial species. Thin layer chromatography of these extracts clearly showed that ethyl acetate extracts of both bacterial culture broths possessed metabolites that were different to those of hexane and aqueous extracts. These results suggest that the both entomopathogenic bacteria produce and secrete different factors to give significant synergistic effect on Bt pathogenicity.

키워드

참고문헌

  1. Beckage, N.E. 2008, Insect immunology. 348 pp. Academic Press, New York
  2. Dennis, E.A. 1994, Diversity of group types, regulation, and function of phospholipase $A_{2}$ J. BioI. Chem. 269: 13057-13060
  3. Dennis, E.A. 1997, The growing phospholipase A2 superfamily of signal transduction enzymes, Trends. Biochem. Sci. 22: 1-2 https://doi.org/10.1016/S0968-0004(96)20031-3
  4. Dionne, M.S., L.N. Pham, M. Shirasu-Hiza and D.S. Schneider. 2006, Akt and FOXO dysregulation contribute to infectioninduced wasting in Drosophila, Curr. BioI. 16: 1977-1985 https://doi.org/10.1016/j.cub.2006.08.052
  5. Dunphy, G.B. and 1.M. Webster. 1984, Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella, J. Insect Physiol. 30: 883-889 https://doi.org/10.1016/0022-1910(84)90063-5
  6. Dunphy, G.B. and J.M. Webster. 1991, Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella., J Invertebr. Pathol. 58: 40-51 https://doi.org/10.1016/0022-2011(91)90160-R
  7. Ferre, 1. and J. Van Rie. 2002, Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol. 47: 501-533 https://doi.org/10.1146/annurev.ento.47.091201.145234
  8. ffrench-Constant, R.H., N. Waterfield and P. Daboffi. 2005, Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill, Elsevier, New York
  9. Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez. 1999, Resistance to Bacillus thuringiensis CrylAc toxin in three strains of Heliothis virescens proteolytic and SEM study of the larval midgut, Arch. Insect Biochem Physiol. 42: 51-63 https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6
  10. Forst, S., B. Dowds, N. Boemare and E. Stackebrandt. 1997, Xenorhabdus and Photorhabdus spp.: bugs that kill bugs, Annu.Rev. Microbiol. 51: 47-72 https://doi.org/10.1146/annurev.micro.51.1.47
  11. Gahan, L.1., F. Gould and D.G. Heckel. 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science 293: 857-860 https://doi.org/10.1126/science.1060949
  12. Gassmann, AJ., lA. Fabrick, M.S. Sisterson, E.R. Hannon, S.P. Stock, Y. Carriere and B.E. Rabashnik. 2009, Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes, J. Econ. Entomol. 102: 1224-1232 https://doi.org/10.1603/029.102.0348
  13. Gillespie, lP., M.R. Kanost and T. Trenczek. 1997, Biological mediators of insect immunity, Annu. Rev. Entomol. 42:611-643 https://doi.org/10.1146/annurev.ento.42.1.611
  14. Haine, E.R., Y. Moret, M.T. Siva-Jothy and 1. Rolff. 2008, Antimicrobial defense and persistent infection in insects, Science 322: 1257-1259 https://doi.org/10.1126/science.1165265
  15. Harrison, D.A., R. Binari, T.S. Nahreini, M. Gilman and N. Perrimon. 1995, Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects, EMBO J. 14: 2857-2865
  16. Jacot, A., H. Scheuber, J. Kurtz and M.W. Brinkhof. 2005, Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets, GryUus campestris, Proc. BioI. Sci. 272: 63-69 https://doi.org/10.1098/rspb.2004.2919
  17. Jenkins, J.I. and D.H. Dean. 2000, Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, eds. by K. Setlow. vol. 22, Plenum, New York
  18. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004, Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plantpathogenic bacteria, FEMS Microbiol. Lett. 239: 241-248 https://doi.org/10.1016/j.femsle.2004.08.041
  19. Jiang, H. and M.R. Kanost. 2000, The clip-domain family of serine proteinases in arthropods, Insect Biochem. Mol. BioI. 30:95-105 https://doi.org/10.1016/S0965-1748(99)00113-7
  20. Kang, S., S. Han and Y. Kim. 2004, Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337 https://doi.org/10.1016/S1226-8615(08)60235-6
  21. Kaya, H.K. and R. Gaugler. 1993, Entomopathogenic nematodes, Annu. Rev. Entomol. 38: 181-206 https://doi.org/10.1146/annurev.en.38.010193.001145
  22. Kim, Y., D. Ji, S. Cho and Y. Park. 2005, Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression, J. Invertebr. Pathol. 89: 258-264 https://doi.org/10.1016/j.jip.2005.05.001
  23. Kwon, B. and Y. Kim. 2008, Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae), J. Econ. Entomol.101: 36-41 https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
  24. Kwon, S. and Y. Kim. 2007, Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae).,BioI. Control 42:72-76 https://doi.org/10.1016/j.biocontrol.2007.03.006
  25. Lavine, M.D. and M.R. Strand. 2002, Insect hemocytes and their role in cellular immune responses, Insect Biochem. Mol. BioI.32: 1237-1242 https://doi.org/10.1016/S0965-1748(02)00086-3
  26. Luo, H., W.P. Hanratty and C.R. Dearolf. 1995, An amino acid substitution in the Drosophila hop Tum-I Jak kinase causes leukemia-like hematopoietic defects, EMBO J. 14: 1412-1420
  27. Oppert, B., K.1. Krammer, R.W. Beeman, D. Johnson and W.H. McGaughey. 1997, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. BioI. Chern. 272: 23473-23476
  28. Park, Y., Y. Kim and Y. Yi. 1999, Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea, J. Asia Pac. Entomol. 2:105-111 https://doi.org/10.1016/S1226-8615(08)60038-2
  29. Park, Y. and Y. Kim. 2000, Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae, J. Insect Physiol. 46: 1469-1476 https://doi.org/10.1016/S0022-1910(00)00071-8
  30. Park, Y. and Y. Kim. 2003, Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua, Arch. Insect Biochem. Physiol. 54: 134-142 https://doi.org/10.1002/arch.10108
  31. Park, Y. and Y. Kim. 2007, An entomopathogenic bacterium, Xenorhabdus nematophila, induces insect immunosuppression by inhibiting phospholipase A$A_{2}$ . J. Basic and Life Res. Sci. 7:31-37
  32. Pham, L.N. and D.S. Schneider. 2008, Evidence for specificity and memory in the insect innate immune response. pp. 97-127, In Insect Immunology, ed. by N.E. Beckage. 348 pp. AcademicPress
  33. Qiu, P., P. Pan and S. Govind. 1998, A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis, Development 125: 1909-1920
  34. Rahman, M.M, H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004, Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella, Proc. Natl.Acad. Sci. USA 101: 2696-2699 https://doi.org/10.1073/pnas.0306669101
  35. Raymond, M. 1985, Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM, Ser. Ent. Med. et Parasitol. 22: 117-121
  36. SAS Institute, Inc. 1989, SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C
  37. Silva, C.P., N.R. Waterfield, P.J. Dabom, P. Dean, T. Chilver, C.P. Au, S. Sharma, U. Potter, S.E. Reynolds and R.H. ffrenchConstant. 2002, Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta, Cell. Microbiol. 6:329-339
  38. Stanley, D. 2000, Eicosanoids in invertebrate signal transduction systems, 277 pp. Princeton University Press, New Jersey
  39. Stanley, D. 2006, Prostaglandins and other eicosanoids in insects: biological significance, Annu. Rev. Entomol 51: 25-44 https://doi.org/10.1146/annurev.ento.51.110104.151021
  40. Tabashnik, B.E., R.T. Roush, E.D. Earle and A.M. Shelton. 2000, Resistance to Bt toxins. Science 287: 42

피인용 문헌

  1. Three metabolites from an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit larval development of Spodoptera exigua (Lepidoptera: Noctuidae) by inhibiting a digestive enzyme, phospholipase A2 vol.18, pp.3, 2011, https://doi.org/10.1111/j.1744-7917.2010.01363.x
  2. Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media vol.49, pp.4, 2010, https://doi.org/10.5656/KSAE.2010.49.4.409
  3. Identification, Synthesis, and Biological Activities of Cyclic L-Prolyl-L-Tyrosine vol.56, pp.5, 2012, https://doi.org/10.5012/jkcs.2012.56.5.661
  4. Structure-activity Analysis of Benzylideneacetone for Effective Control of Plant Pests vol.50, pp.2, 2011, https://doi.org/10.5656/KSAE.2011.04.0.15
  5. Study on Development of Novel Biopesticides Using Entomopathogenic Bacterial Culture Broth of Xenorhabdus and Photorhabdus vol.49, pp.3, 2010, https://doi.org/10.5656/KSAE.2010.49.3.241
  6. Insecticidal Effect of Organic Materials of BT, Neem and Matrine Alone and Its Mixture against Major Insect Pests of Organic Chinese cabbage vol.17, pp.3, 2013, https://doi.org/10.7585/kjps.2013.17.3.213
  7. Benzylideneacetone suppresses both cellular and humoral immune responses of Spodoptera exigua and enhances fungal pathogenicity vol.14, pp.4, 2011, https://doi.org/10.1016/j.aspen.2011.06.001
  8. Inhibitors Synthesized by Two Entomopathogenic Bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata vol.78, pp.11, 2012, https://doi.org/10.1128/AEM.00301-12