Electrochromic Pattern Formation by Photo Cross-linking Reaction of PEDOT Side Chains

  • Kim, Jeong-Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Yu-Na (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Eun-Kyoung (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Published : 2009.10.25

Abstract

An electrochemically and photochemically polymerizable monomer, 2-((2,3-dihydrothieno[3,4-b] [1,4]dioxin-2-yl)methoxy)ethyl methacrylate (EDOT-EMA), was explored for patterning of poly(3,4-ethylenedioxythiophene) (PEDOT) via side chain cross-linking. The polymer from EDOT-EMA was deposited electrochemically to produce polymeric EDOT (PEDOT-EMA), which was directly photo-patterned by UV light as the side EMA groups of PEDOT-EMA were polymerized to give cross-linked EMA (PEDOT-PEMA). Absorption and FTIR studies of the UV-exposed film (PEDOT-PEMA) indicated that the photo-patterning mainly originated from the photo cross-linking of the methacrylates in the side-chain. After irradiation of the film, the conductivity of the irradiated area decreased from $5.6{\times}10^{-3}$ S/cm to $7.2{\times}10^{-4}$ S/cm, possibly due to bending of the conductive PEDOT channel as a result of the side chain cross-linking. The patterned film was applied to a solid state electrochromic (EC) cell to obtain micro-patterned EC cells with lines up to 5 ${\mu}m$ wide.

Keywords

References

  1. Z. Nie and E. Kumacheva, Nature Materials, 7, 277 (2008) https://doi.org/10.1038/nmat2109
  2. F. Zhang, T. Nyberg, and O. Ingan\ddot{a}s, Nano Lett., 2, 1373 (2002) https://doi.org/10.1021/nl025804m
  3. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, Science, 265, 2071 (1994) https://doi.org/10.1126/science.265.5181.2071
  4. M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, Nano Lett., 8, 1736 (2008) https://doi.org/10.1021/nl0808233
  5. R. d'Agostino, Plasma Deposition, Treatment, and Etching of Polymers, Academic Press, London, 1990
  6. S. H. Cho, H. S. Lim, B. K. Jeon, J. M. Ko, J. Y. Lee, and W. G. Kim, Macromol. Res., 16, 31 (2008) https://doi.org/10.1007/BF03218957
  7. J. P. Ranieri, R. Bellamkonda, J. Jacob, T. G. Vargo, J. A. Gardella, and P. Aebischer, J. Biomed. Mater. Res., 27, 917 (1993) https://doi.org/10.1002/jbm.820270711
  8. D. J. Pritchard, H. Morgan, and J. M. Cooper, Angew. Chem., Int. Ed. Engl., 34, 91 (1995) https://doi.org/10.1002/anie.199500911
  9. L. Dai, H. J. Griesser, X. Hong, A. W. H. Mau, T. H. Spurling, Y. Yang, and J. W. White, Macromolecules, 29, 282 (1996) and references therein https://doi.org/10.1021/ma951054+
  10. M. J. Bowden and S. R. Turner, Electronic and Photonic Applications of Polymers, American Chemical Society, Washington, DC, 1988
  11. Y. J. Yu, S. H. Lee, D. H. Choi, J. I. Jin, and N. Tessler, Macromol. Res., 15, 142 (2007) https://doi.org/10.1007/BF03218765
  12. L. Dai, H. J. Griesser, and A. W. H. Mau, J. Phys. Chem. B, 101, 9548 (1997) https://doi.org/10.1021/jp970562d
  13. G. Heywang and F. Jonas, Adv. Mater., 4, 116 (1992) https://doi.org/10.1002/adma.19920040213
  14. M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, J. Electroanal. Chem., 369, 87 (1994) https://doi.org/10.1016/0022-0728(94)87085-3
  15. I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, Chem. Phys., 194, 207 (1995) https://doi.org/10.1016/0301-0104(95)00026-K
  16. Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganas, Polymer, 35, 1347 (1994) https://doi.org/10.1016/0032-3861(94)90332-8
  17. B. Y. Ouyang, C. W. Chi, F. C. Chen, Q. Xu, and Y. Yang, Adv. Funct. Mater., 15, 203 (2005) https://doi.org/10.1002/adfm.200400016
  18. J. Lowe and S. Holdcroft, Macromolecules, 28, 4608 (1995) https://doi.org/10.1021/ma00117a035
  19. J. Lowe and S. Holdcroft, Synth. Met., 85, 1427 (1997) https://doi.org/10.1016/S0379-6779(97)80305-0
  20. J. F. Yu, M. Abley, C. Yang, and S. Holdcroft, Chem. Commun., 1503 (1998)
  21. M. L. Blohm, J. E. Pickett, and P. C. VanDort, U.S. Patent 5111327 (1993)
  22. O. Stephan, P. Schottland, P.-Y. Le Gall, C. Chevrot, C. Mariet, and M. Carrier, J. Electroanal. Chem., 443, 217 (1998) https://doi.org/10.1016/S0022-0728(97)00548-2
  23. J. L. Segura, R. G\ddot{o}mez, R. Blanco, E. Reinold, and P. B\ddot{a}uerle, Chem. Mater., 18, 2834 (2006) https://doi.org/10.1021/cm0602085
  24. E. Kim and S. Jung, Chem. Mater., 17, 6381 (2005) https://doi.org/10.1021/cm051492n
  25. L. B. Groenendaal, G. Zotti, P.-H. Aubert, S. M. Waybright, and J. R. Reynolds, Adv. Mater., 15, 855 (2003) https://doi.org/10.1002/adma.200300376
  26. A. J. Downard and D. Pletcher, J. Electroanal. Chem., 206, 147 (1986) https://doi.org/10.1016/0022-0728(86)90264-0
  27. X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, Chem. Mater., 18, 4354 (2006) https://doi.org/10.1021/cm061032+
  28. P. Bauerle and S. Sheib, Adv. Mater., 5, 848 (1993) https://doi.org/10.1002/adma.19930051113
  29. H. K. Youssoufi, A. Yassar, S. Baiteche, M. Hmyene, and F. Garnier, Synth. Met., 67, 251 (1994) https://doi.org/10.1016/0379-6779(94)90051-5
  30. M. J. Marsella and T. M. Swager, J. Am. Chem. Soc., 115, 12214 (1993) https://doi.org/10.1021/ja00078a090
  31. M. J. Marsella, P. J. Carroll, and T. M. Swager, J. Am. Chem. Soc., 116, 9347 (1994) https://doi.org/10.1021/ja00099a069
  32. M. J. Marsella, R. J. Newland, P. J. Carrol, and T. M. Swager, J. Am. Chem. Soc., 117, 9842 (1995) https://doi.org/10.1021/ja00144a009
  33. B. J. Holliday and T. M. Swager, Chem. Commun., 23 (2005)
  34. E. M. Ali, E. A. B. Kantchev, H.-h. Yu, and J. Y. Ying, Macromolecules, 40, 6025 (2007) https://doi.org/10.1021/ma0708949
  35. S. Garreau, G. Louarn, J. P. Bruisson, and S. Lefrant, Macromolecules, 32, 6807 (1999) https://doi.org/10.1021/ma9905674
  36. B. Winther-Jensen and K. West, Macromolecules, 37, 4538 (2004) https://doi.org/10.1021/ma049864l
  37. B. S. R. Reddy and S. Balasubramanian, Eur. Polym. J., 38, 803 (2002) https://doi.org/10.1016/S0014-3057(01)00242-7
  38. C. KvarnstroÈ ma, H. Neugebauer, S. Blomquist, H. J. Ahonen, J. Kankare, and A. Ivaska, Electrochim. Acta, 44, 2739 (1999) https://doi.org/10.1016/S0013-4686(98)00405-8
  39. V. Hernandez, F. J. Ramirez, T. F. Otero, and J. T. L. Navarrete, J. Chem. Phys., 100, 114 (1994) https://doi.org/10.1063/1.466982
  40. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New-York, 1964, p 276
  41. R. S. Tipson, H. S. Isbell, and J. E. Stewart, J. Res. Natl. Bur. Standards, 62, 257 (1959) https://doi.org/10.6028/jres.062.041
  42. N. Sakai, G. K. Prasad, Y. Ebina, K. Takada, and T. Sasaki, Chem. Mater., 18, 3596 (2006) https://doi.org/10.1021/cm060696g
  43. W. Feng, Y. Li, J. Wu, H. Noda, A. Fujii, M. Ozaki, and K. Yoshino, J. Phys. Condens. Matter., 19, 186220 (2007) https://doi.org/10.1088/0953-8984/19/18/186220