무선 센서 네트워크에서 유전자 알고리즘 기반의 혼잡 제어

Congestion Control based on Genetic Algorithm in Wireless Sensor Network

  • 박총명 (강원대학교 컴퓨터정보통신공학) ;
  • 이좌형 (강원대학교 컴퓨터정보통신공학) ;
  • 정인범 (강원대학교 컴퓨터정보통신공학)
  • 발행 : 2009.10.15

초록

센서 네트워크는 많은 센서 노드들이 환경 정보를 수집하는 이벤트 기반의 네트워크 시스템이다. 에너지를 효율적으로 사용하기 위해, 센싱 주기를 길게 하며 특정한 이벤트가 발생한 경우에는 짧은 주기로 센싱하여 전송한다. 이러한 센서 네트워크 환경에서 지역적인 이벤트 발생은 네트워크의 혼잡을 야기하여 중요한 정보의 손실이 일어날 수 있으며, 과다한 전송 모듈의 사용으로 네트워크의 수명이 단축될 수 있다 본 논문에서는 지역적인 이벤트가 발생하여 네트워크 트래픽이 증가할 때, 트래픽이 집중된 노드의 트래픽을 분산하기 위한 유전자 알고리즘 기반의 흔잡 제어 기법(CCGA)을 제안한다. CCGA는 트래픽이 집중된 노드의 자식 노드들로부터 주변 노드들의 정보를 수집하고 유전자 알고리즘을 수행하여 포워딩노드를 선택하고 트래픽을 분산시킨다. CCGA의 유전자 알고리즘은 주변 노드들의 데이터 전송률을 염색체로 표현하였다. 이벤트 발생 지역 주변노드들의 데이터 전송률이 고르게 분포될 수 있도록 이벤트 발생지역 노드들의 전송률 평균과 표준편차를 이용한 적합도 함수를 설계하였다. 실험을 통하여 CCGA 알고리즘이 센서 노드들의 데이터 전송률을 균등하게 유지시키며 이러한 결과가 특정 노드의 전력 소모 집중을 방지함을 보인다. 이러한 결과는 센서 네트워크의 신뢰성 있는 데이터 전송을 보장하며 센서 네트워크의 수명 연장에 기여한다.

Wireless sensor network is based on an event driven system. Sensor nodes collect the events in surrounding environment and the sensing data are relayed into a sink node. In particular, when events are detected, the data sensing periods are likely to be shorter to get the more correct information. However, this operation causes the traffic congestion on the sensor nodes located in a routing path. Since the traffic congestion generates the data queue overflows in sensor nodes, the important information about events could be missed. In addition, since the battery energy of sensor nodes exhausts quickly for treating the traffic congestion, the entire lifetime of wireless sensor networks would be abbreviated. In this paper, a new congestion control method is proposed on the basis of genetic algorithm. To apply genetic algorithm, the data traffic rate of each sensor node is utilized as a chromosome structure. The fitness function of genetic algorithm is designed from both the average and the standard deviation of the traffic rates of sensor nodes. Based on dominant gene sets, the proposed method selects the optimal data forwarding sensor nodes for relieving the traffic congestion. In experiments, when compared with other methods to handle the traffic congestion, the proposed method shows the efficient data transmissions due to much less queue overflows and supports the fair data transmission between all sensor nodes as possible. This result not only enhances the reliability of data transmission but also distributes the energy consumptions across the network. It contributes directly to the extension of total lifetime of wireless sensor networks.

키워드

참고문헌

  1. I.-F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: a survey," Computer Networks, vol.38, pp.393-422, March 2002 https://doi.org/10.1016/S1389-1286(01)00302-4
  2. J. Polastre, R. Szewczyk, C. Sharp, D. Culler, "The Mote Revolution: Low Power Wireless Sensor Network Devices," in Proceedings of Hot Chips 16: A Symposium on High Performance Chips, August 2004
  3. Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz, "ESRT: Event-to-Sink Reliable Transport for Wireless Sensor Networks," Proceedings of the 4th ACM international symposium on Mobile ad hoc networking and computing, pp.177-188, June 2003
  4. C. Wang, B. Li, K. Sohraby, M. Daneshmand, and Y. Hu, "Upstream Congestion Control in Wireless Sensor Networks Through Cross-Layer Optimization," IEEE Journal on Selected Areas in Communimtions, vol.25, 2007
  5. D.E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning," AddisonWesley Publishing Company, Inc. 1989
  6. Y. Wang, "Topology control for wireless sensor networks," Wireless Sensor Networks and Applimtions, Springer, 2008
  7. V. Gupta and R. Pandey, "Data fusion and topology control in wireless sensor networks," 2007
  8. R. Ramanathan and R. Rosales-Hain, "Topology Control of Multihop Wireless Networks using Transmit Power Adjustment," Proceedings of the IEEE Conference on Computer Communimtions (INFOCOM), pp.404-413, March 2000
  9. R. Wattenhofer, L. Li, P. Bahl, and Y. Wang, "Distributed topology control for wireless multihop ad hoc networks," Proceedings of the Twenty First International Annual Joint Conference of the IEEE Computer and Communimtions Societies (INFOCOM), pp.1388-1397, 2001
  10. A. Cerpa and D. Estrin, "ASCENT: Adaptive self-configuring sensor network topologies," In Twenty First International Annual Joint Conference of the IEEE Computer and Communimtions Societies (INFOCOM), June 2002
  11. F. Stann and J Heidemann, "RMST: Reliable data transport in sensor networks," Proceedings of the First International Workshop on Sensor Network Protocols and Applimtions, May 2003
  12. C. Wan, A. Campbell, and L. Krishnamurthy, "PSFQ: A reliable transport protocol for wireless sensor networks," Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applimtions, September 2002
  13. C. Wan, S. Eisenman, and A. Campbell, "CODA: Congestion detection and avoidance in sensor networks," Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems, November 2003
  14. http://tinyos.net
  15. A. Woo, T. Tong, and D. Culler, "Taming the underlying challenges of reliable multihop routing in sensor networks," Proceedings of the 1st international conference on Embedded networked sensor systems, pp.14-27, 2003
  16. P. Levis, N. Lee, M. Welsh, D. Culler, "TOSSIM: accurate and scalable simulation of entire tinyOS applications," Proceedings of the 1st international conference on Embedded networked sensor systems, November, 2003