References
- Wang, J., de Vries, A. P., and Reinders, M. J. T., 'Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion,' In Proceedings of SIGIR2006, 2006
- Breese, J. S., Heckerman, D., and Kadie, C., 'Empirical analysis of predictive algorithms for collaborative filtering,' In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 1998
- Wei, Y. Z., Moreau, L., and Jennings, N. R., 'Learning users' interests by quality classification in market-based recommender systems,' IEEE Trans on Knowledge and Data Engineering, vol.17, no.12, pp.1678-1688, 2005 https://doi.org/10.1109/TKDE.2005.200
- Sawar, B. M., Karypis, G., Konstan, J. A., and Riedl, J., 'Application of dimensionality reduction in recommender system – A case study,' In roceedings of ACM WebKDD, 2000
- 김종훈, 김용집, 정경용, 임기욱, 이정현, '분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링', 한국콘텐츠학회논문지, 제7권, 제11호, 2007
- Karypis, G., 'Evaluation of item-based top-N recommendation algorithms,' In Proceedings of the ACM Conference on Information and Knowledge Management, 2000
- Canny, J., 'Collaborative Filtering with Privacy via Factor Analysis,' In Proceedings of the 25th ACM SIGIR, 2002
- Zhang, S., Wang, W., Ford, J., and Makedon, F., 'Learning from Incomplete Rating Using Nonnegative Matrix Factorization,' In Proceedings of SDM2006, 2006
- Chen, G., Wang, F., Zhang C., 'Collaborative filtering using orthogonal nonnegative matrix trifactorization,' Information Processing and Management: an International Journal, vol.45, no.3, 2009 https://doi.org/10.1016/j.ipm.2008.12.004
- Wu, M., 'Collaborative Filtering via Ensembles of Matrix Factorizations,' In Proceedings of KDD Cup and Workshop 2007, 2007
- Lee, D. and Seung, H., 'Algorithms for nonnegative matrix factorization,' Advances in Neural Information Processing Systems, pp.556-562, 2001
- Liu, W. and Yi, J., 'Existing and New algorithms for nonnegative matrix factorization,' Tech. rep., Department of Computer Sciences, University of Texas at Austin, 2003
- Xu, W., Liu, X., and Gong, Y, 'Document clustering based on non-negative matrix factorization,' In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, 2003
- George, T and Meruge, S., 'A Scalable Collaborative Filtering Framework based on Co-clustering,' In Proceedings of the 5th IEEE Conference on Data Mining (ICDM), 2005
- MovieLens collaborative filtering data set, 'Http://www.cs.umn.edu/Research/GroupLens/index.html,' GROUPLENS RESEARCH PROJECT, 2000
- Salton, G. and McGill, M. J., Introduction to Modern Information Retrieval, McGraw-Hill, 1983
- Churck, K. W. and Hanks, P., 'Word association norms, mutual information, and lexicography,' Computational Linguistics, vol.16, no.1, 1990
- Shannon, C. E., 'A mathematical theory of communication,' Bell System Technical Journal, vol.27, pp.379-423, 1948
- Torkkola, K. and Campbell, W. M., 'Mutual Information in Learning Feature Transformations,' In Proceedings of Int'l Conf. Machine Learning, 2000
- Deshpande, M. and Karypis, G., 'Item-based top-n recommendation algorithms,' ACM Trans. Inf. Syst., vol.22, no.1, 2004
- Sarwar, B., Karypis, G., Konstan, J., and Riedl, J., 'Item-based collaborative filtering recommendation algorithms,' In Proceedings of the WWW Conference, 2001
- Linden, G., Smith, B. and York, J., 'Amazon.com recommendations: Item-to-item collaborative filtering,' IEEE Internet Computing, 2003
- Kim, H., Lee, H., and Seo, J., 'Improving FAQ Retrieval Using Query Log Clustering in semantic space,' In Proceedings of AIRS 2005, pp.233-245, 2005
- Herlocker, J., Konstan, J., Terveen, L., and Riedl, J., 'Evaluating Collaborative Filtering Recommender Systems,' ACM Transactions on Information Systems, vol.22, no.1, pp.5-53, 2004 https://doi.org/10.1145/963770.963772
- Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B., and Riedl, J., 'Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System,' In Proceedings of CSCW'98, 1998
- Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman, R. A., 'Indexing by latent semantic analysis,' Journal of the american society of Information Science, vol.41, no.6, 1990
- Amershi, S. and Conati, C., 'Unsupervised and supervised machine learning in user modeling for intelligent learning environments,' In Proceedings of the 2007 International Conference on Intelligent User Interfaces, 2007
- Rashid, AI M., Lan, S. K., Karypis, G., and Riedl, J., 'ClustKNN: A Highly Scalable Hybrid Model& Memory Based CF Algorithm,' In Proceedings of. WebKDD, 2006