시간분해 레이저 유도 형광 분광학을 이용한 우라늄(VI) 가수분해 화학종 규명 연구

Study on the Chemical Speciation of Hydrolysis Compounds of U(VI) by Using Time-Resolved Laser-Induced Fluorescence Spectroscopy

  • 발행 : 2009.09.30

초록

시간분해 레이저 유도 형광 분광학을 이용하여 ${UO_2}^{2+}$, $UO_2(OH)^+$, ${(UO_2)}_2{(OH)_2}^{2+}$, ${(UO_2)}_3{(OH)_5}^+$와 같은 우라늄(VI) 화학종 규명 연구를 수행하였다. 들뜸 파장의 변화에 따른 화학종 규명 감도를 조사하였다. 266nm의 들뜸 파장을 이용할 경우, 나노 몰 농도의 U(VI) 화합물을 구분할 수 있는 화학종 규명 감도를 얻었다. 이온 세기가 0.1 M, pH가 1인 조건에서 ${UO_2}^{2+}$ 이온의 형광 스펙트럼과 형광 수명을 측정하였다. 488, 509, 533, 559nm파장의 특징적인 형광 봉우리를 관측하였고, 측정한 형광 수명은 $1.92{\pm}0.17{\mu}s$ 이었다. U(VI) 가수분해 화합물의 형광 스펙트럼과 형광 수명의 변화를 이 값을 기준으로 비교하였다. 장파장 방향으로 이동한 형광 봉우리와 길어진 형광 수명을 가진 가수분해 화합물의 특징적인 양상을 보고한다.

Study on the chemical speciation of uranium(VI) species, ${UO_2}^{2+}$, $UO_2(OH)^+$, ${(UO_2)}_2{(OH)_2}^{2+}$, ${(UO_2)}_3{(OH)_5}^+$, has been peformed by using time-resolved laser-induced fluorescence spectroscopy. Speciation sensitivity which depends on the excitation wavelength was investigated. We obtained the speciation sensitivity in the order of $10^{-9}$ M concentration of U(VI) compounds at the excitation wavelength of 266 nm. The fluorescence spectrum and lifetime of ${UO_2}^{2+}$ were carefully measured at pH 1 and ion strength of 0.1 M. The spectrum showed the four characteristic peaks located around 488, 509, 533, 559nm and the fluorescence lifetime of $1.92{\pm}0.17{\mu}s$. The wavelength shifts of fluorescence peaks and the change of lifetimes for uranium hydrolysis compounds were compared with those of ${UO_2}^{2+}$. We report on the characteristic features, the shifts of peaks to the longer wavelength direction and the prolonged lifetimes, in the fluorescence of the U(VI) hydrolysis compounds.

키워드

참고문헌

  1. W. Runde, "The Chemical Interactions of Actinides in the Environment", Los Alamos Science, Number 26, pp. 392-411 (2000).
  2. J-I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal”, Nucl. Eng. Technol., 38(6), pp. 459-482 (2006).
  3. "Evaluation of Speciation Technology", Workshop Proceedings Tokai-mura, Ibaraki, Japan, 26-28 October (1999).
  4. W. Runde, "Spectroscopies for Environmental Studies of Actinide Species", Los Alamos Science, Number 26, pp. 412-415 (2000).
  5. M.E.D.G. Azenha, H.D. Burrows, S.J. Formosinho, M.G.M. Miguel, A.P. Daramanyan, I.V. Khudyakov, "On the uranyl ion luminescence in aqueous solutions", J. Luminescence, 48/49, pp. 522-526 (1991). https://doi.org/10.1016/0022-2313(91)90184-W
  6. W-S. Jung, "Emission Spectra of the Uranyl Ion in Aqueous Solutions at 77 K", Bull. Korean Chem. Soc. 12(6), pp. 711-712 (1991).
  7. Y. Kato, G. Meinrath, T. Kimura, Z. Yoshida, "A Study of U(VI) Hydrolysis and Carbonate Complexation by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLIF)", Radiochim. Acta, 64, pp. 107-111 (1994)
  8. G. Meinrath, Y. Kato, Z. Yoshida, "Spectroscopic Study of the Uranyl Hydrolysis Species $(UO_2)_2(OH)_2^{2+n}$", J. Radioanal. Nucl. Chem. 174(2), pp. 299-314 (1993). https://doi.org/10.1007/BF02037917
  9. C. Moulin, P. Decambox, V. Moulin, J.G. Decaillon, "Uranium Speciation in Solution by Time-Resolved Laser-Induced Fluorescence", Anal. Chem. 67(2), pp. 348-353 (1995). https://doi.org/10.1021/ac00098a019
  10. G. Bernhard, G. Geipel, V. Brendler, H. Nitsche, "Speciation of Uranium in Seepage Waters of a Mine Tailing Pile Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", Radiochim. Acta, 74, pp. 87-91 (1996).
  11. G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, H. Nitsche, "Uranium(VI) Sulfate Complexation Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", Radiochim. Acta, 75, pp. 199-204 (1996).
  12. M. Lopez, D.J.S. Birch, "Characterisation of the dimer formed by hydrolysis of uranyl in aqueous solution and its role in the biexponential luminescence decay", Chem. Phys. Lett. 268, pp. 125-132 (1997). https://doi.org/10.1016/S0009-2614(97)00185-1
  13. C. Moulin, I. Laszak, V. Moulin, C. Tondre, "Time-Resolved Laser-Induced Fluorescence as a Unique Tool for Low-Level Uranium Speciation", Appl. Spectrosc. 52(4), pp. 528-535 (1998). https://doi.org/10.1366/0003702981944076
  14. M. Bouby, I. Billard, A. Bonnenfant, G. Klein, "Are the changes in the lifetime of the excited uranyl ion of chemical or physical nature?", Chem. Phys. 240, pp. 353-370 (1999). https://doi.org/10.1016/S0301-0104(98)00396-6
  15. G. Meinrath, S. Lis, Z. Stryla, C. Noubactep, "Lifetime and fluorescence quantum yield of uranium(VI) species in hydrolyzed solutions", J. Alloys Comp. 300-301, pp. 107-112 (2000). https://doi.org/10.1016/S0925-8388(99)00739-2
  16. I. Billard, A. Rustenholtz, L. Semon, K. Lutzenkirchen, "Fluorescence of $UO_2^{2+}$ in a non-complexing medium: $HClO_4/NaClO_4$ up to 10 M", Chem. Phys. 270, pp. 345-354 (2001). https://doi.org/10.1016/S0301-0104(01)00404-9
  17. V. Eliet, I. Grenthe, G. Bidoglio, "Time-Resolved Laser- Induced Fluorescence of Uranium(VI) Hydroxo-Complexes at Different Temperatures, Appl. Spectrosc. 54(1), pp. 99-105 (2000). https://doi.org/10.1366/0003702001948178
  18. I. Billard, E. Ansoborlo, K. Apperson, S. Arpigny, M.E. Azenha, D. Birch, P. Bros, H.D. Burrows, G. Choppin, L. Couston, V. Dubois, T. Fanghanel, G. Geipel, S. Hubert, J.I. Kim, T. Kimura, R. Klenze, A. Kronenberg, M. Kumke, G. Lagarde, G. Lamarque, S. Lis, C. Madic, G. Meinrath, C. Moulin, R. Nagashi, D. Parker, G. Plancque, F. Scherbaum, E. Simoni, S. Sinkov, C. Viallesoubranne, "Aqueous Solutions of Uranium(VI) as Studied by Time-Resolved Emission Spectroscopy: A Round-Robin Test", Appl. Spectrosc. 57(8), pp. 1027-1038 (2003). https://doi.org/10.1366/000370203322259002
  19. A. Kirishima, T. Kimura, O. Tochiyama , Z. Yoshida, "Speciation study on uranium(VI) hydrolysis at high temperature and pressures", J. Alloys Comp. 374, pp. 277-282 (2004). https://doi.org/10.1016/j.jallcom.2003.11.105
  20. 조혜륜, 박경균, 정의창, 지광용, "레이저유도파열검출 기술을 이용한 우라늄(VI) 가수분해물의 용해도 측정", 방사성폐기물학회지, 5(3), pp. 189-197 (2007).