Effects of Concentration and Size of Porous Calcium Silicate (PCS) in Broiler Feeds on Performances, Fly Generation and Malodorous Gas Emission

Porous Calcium Silicate(PCS)의 급여수준 및 PCS 입자 크기가 육계의 성장, 파리 및 악취 발생에 미치는 영향

  • Jeon, B.S. (National Institute of Animal Science, Rural Development Administration) ;
  • Song, J.I. (National Institute of Animal Science, Rural Development Administration) ;
  • Jeon, J.H. (National Institute of Animal Science, Rural Development Administration) ;
  • Kwag, J.H. (National Institute of Animal Science, Rural Development Administration) ;
  • Kang, H.S. (National Institute of Animal Science, Rural Development Administration) ;
  • Choi, H.C. (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, T.I. (National Institute of Animal Science, Rural Development Administration) ;
  • Lee, E.S. (National Institute of Animal Science, Rural Development Administration) ;
  • Nahm, K.H. (Feed and Nutrition Laboratory, College of Life and Environmental Science, Taegu University)
  • 전병수 (농촌진흥청 국립축산과학원) ;
  • 송준익 (농촌진흥청 국립축산과학원) ;
  • 전중환 (농촌진흥청 국립축산과학원) ;
  • 곽정훈 (농촌진흥청 국립축산과학원) ;
  • 강희설 (농촌진흥청 국립축산과학원) ;
  • 최희철 (농촌진흥청 국립축산과학원) ;
  • 김태일 (농촌진흥청 국립축산과학원) ;
  • 이은솔 (농촌진흥청 국립축산과학원) ;
  • 남기홍 (대구대학교 생명환경과학대학 사료영양실험실)
  • Published : 2009.08.30

Abstract

Three experiments on the addition of Porous Calcium Silicate (PCS) to broiler feed were conducted at different time periods in the same house. Each treatment had 4 replicates with 12 chicks in each treatment. Weight gain and feed intake were higher ($P{\le}0.05$) in the control groups. Feed conversions' were better ($P{\le}0.05$) in the PCS group, 3.0% PCS and 20 mesh size of PCS than the control group from 21 to 49 days, and for the overall period. $NH_3$ and $H_2S$. gas production were decreased ($P{\le}0.05$) when zeolite was added in broiler feeds. 1.5% or 3.0% PCS in broiler feed was better ($P{\le}0.05$) than the 4% PCS. More than 90 mesh size PCS was better ($P{\le}0.05$) in controlling $CO_2$ production in the 5th period than the 20 or 50 mesh size or control groups. The control and PCS groups produced more flies ($P{\le}0.05$) than zeolite group during the 2nd and 3rd weeks. The 3.0% or 4.5% PCS or 50 or 90 mesh size of PCS in broiler feed produced more flies than the 20 mesh size or control groups although 50 or 90 mesh size of PCS during 5th week tended to have lower fly production than the 20 mesh size of PCS and control group.

PCS와 zeolite 첨가급여가 육계의 성장능력, 유해가스 및 파리발생에 미치는 영향을 구명하기 위하여 대조구, PCS구, zeolite구를 두었으며 처리구당 4반복, 반복당 브로일러 12수씩 총 144수를 완전임의 배치하여 사양시험을 실시하였다. PCS 급여구는 증체, 사료섭취량이 대조구에 비해 유의적으로 적었으나, 사료효율은 현저하게 개선되었으며 (P<0.05) zeolite와 증체 및 사료요구율은 통계적인 차이가 없었고, 사료섭취량은 감소하였다. 암모니아 가스의 농도는 PCS 급여구와 대조구 간에 유의적인 차이가 없었다. 그러나 PCS 처리구는 zeolite 급여구에 비해 2, 3주령에 현저하게 높은 결과를 보여주었지만(P<0.05) 5주령에는 유의적인 차이가 없었다. PCS 첨가수준이 육계의 성장능력, 유해가스 감소 및 파리발생에 미치는 영향을 구명하기 위하여 대조구, PCS 1.5%구, PCS 3.0%구, PCS 4.5%구를 두었으며 각 처리당 4반복, 반복당브로일러 12수씩 총 192수를 완전임의배치하여 사양시험을 실시하였다. 시험 결과 PCS 1.5% 급여구는 증체량, 사료섭취량은 대조구에 비하여 낮은 경향을 보였지만 통계적인 차이가 없었으며, 사료요구 율은 PCS 3.0%에서 다른 처리구에 비하여 개선되었다. 영양소 소화율과 에너지 이용율은 PCS 처리구에서 대조구보다 높았으며, 3.0% 처리구에서 제일 높았다. 계분에서 발생되는 암모니아 농도는 5주령에 PCS 1.5와 3.0% 처리구에서 대조구에 비하여 현저하게 낮았으며 (P<0.05), 황화수소는 PCS 처리구간에 일관성은 없었지만 1.5% 급여 구에서 대조구에 비하여 현저하게 낮았다(P<0.05). PCS 입자도별 급여가 브로일러의 능력, 유해가스 발생 농도 및 파리 발생에 미치는 영향을 구명하기 위하여 대조구, PCS 20, 50, 90 mesh구를 두었으며 증체 및 사료섭취량은 대조구에 비해 모든 PCS 입자도(20, 50, 및 90 mesh) 급여구에서 유의적으로 감소하였다. 그러나 사료 요구율은 대조구와 처리구들 사이에 유의적인 차이를 나타내지 않았으나 PCS 20 mesh를 급여한 구에서 다소 개선되는 경향을 보였다. 이상의 실험 결과를 토대로 PCS 육계의 영양소 소화율은 대조구보다 개선되었고 암모니아 및 황화수소 농도를 낮추는 경향을 보였으나 이에 대한 더 많은 연구가 필요하다고 사료된다.

Keywords

References

  1. AOAC. 1985. Official Methods of Analysis (14th edition). Association of Official Analytical Chemists, Washington, DC, USA.
  2. Cai, L., Koziel, J. A., Liang, Y., Nguyen, A. T. and Xin, H. 2006. Evaluation of zeolite for control of odorants emissions from simulated poultry manure storage. Journal of Environmental Quality (accepted).
  3. Dominey, R. W. and Nakaue, H. S. 1977. Intermittent light and light intensity effects on broilers in light-proof pens. Poultry Science 56: 1868-1875. https://doi.org/10.3382/ps.0561868
  4. Donaldson, W. E., Corns, G. F. and Romoser, G. L. 1956. Studies on energy levels in poultry rations. J. The effect of calorie-protein ratios of the ration on growth, nutrient utilization and body composition of chicks. Poultry Science 35: 1100-1105. https://doi.org/10.3382/ps.0351100
  5. Hulan, H. W., Simons, P. C. W., Van Schagen, P. J. W., McRae, K. B. and Proudfoat, F. G. 1987. Effect of dietary cation-anion balance and calcium content on general performance and incidence of leg abnormalities of broiler chickens. Canadian Journal of Animal Science 67: 165-177. https://doi.org/10.4141/cjas87-019
  6. Jacobson, L. D., Wood, S. L., Schmidt, D. R., Heber, A. J., Bicudo, J. R. and Moon, R. D. 2001. Site selection of animal operations using air Quality criteria. In: International Symposium Addressing Animal Production and Environmental Issues. Oct. 3-5, Sheraton Imperial, Research Triangle Park, NC, USA. Pp. 59-83.
  7. Jacson, S., Summers, J. D. and Lesson, S. 1982. Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization. Poultry Science 61 :2224-2231. https://doi.org/10.3382/ps.0612224
  8. Kithome, Mo, r. W., Paul, L. M. Lavkulich and A. A. Bomke. 1998. Soil Science Society of Ammerica. 62(3):622-629. https://doi.org/10.2136/sssaj1998.03615995006200030011x
  9. Kristensen, H. H. and Wathes, C. M. 2000. Ammonia and poultry welfare: a review. World's Poultry Science 56(3):235-246. https://doi.org/10.1079/WPS20000018
  10. Latshaw, J. D. and Turner, K. A. 1991. Failure of two feed additives (shell-developer and ethical) to improve eggshell quality. Poultry Science 70(3):593-599. https://doi.org/10.3382/ps.0700593
  11. Liang, Y., Xin, H. W., Hong, L., Koziel, J. A. and Cai, L. S. 2005. Evaluation of treatment agents and diet manipulation for mitigating ammonia and odor emissions from laying hen manure. 2005 ASAE Annual International Meeting. Paper ND: 054160.
  12. Milne, T. A. and Froseth, J. A. 1982. Zeolite reduced pigs scours, but didn't improve feed: gain. Feedstuffs 54(16):13-18.
  13. Min, B. T., Kim, Y. J. and Ohh, S. J. 1988. Effect of zeolite to broiler feed. Korean Journal of Animal Science 15(1): 31-38.
  14. Moore, P. A., Jr. 2003. Reducing ammonia emissions and phosphorus runoff from animal manure with compounds. In: Taegu University, Life Science Institute, pp. 14-27.
  15. Moore, P. A., Jr. and Miller, D. M. 1994. Decreasing phosphorus solubility In poultry litter with aluminum, calcium and iron , amendments. Journal of Environmental Quality 23:325-330. https://doi.org/10.2134/jeq1994.00472425002300020016x
  16. Mumpton, F. A. and Fishman, P. H. 1977. The application of natural zeolites In animal science and aquaculture. Journal of Animal Science 45(5):1188-1203. https://doi.org/10.2527/jas1977.4551188x
  17. Nakaue, H. S., Koelliker, J. K. and Arscott, G. H. 1978. Effect of clinoptilolite (zeolite) on layer and broiler and poultry house environment. Poultry Science 57: 1175 (abstract)
  18. National Research Council. 2003. Air emissions from animal feeding operations current knowledge, future needs. National Academy of Sciences P. 50-97.
  19. Onagi, T. 1965. Evaluation of treatment of chicken droppings with zeolite-tuff power. Reproduction of Yamagata Stock Raising Institute. pp. 11-22.
  20. Ssangyoung Ltd. Co. 1992. The report of porous calcium silicate (PCS). Ssangyoung Report, pp. 12-15.
  21. Seltzer, W., S. G. Mourn and T. M. Goldhaft. 1969. A method for the treatment of animal wastes to control ammonia and other odor. Poul. Sci. 48:1912-1918. https://doi.org/10.3382/ps.0481912
  22. Son, Y. S. 1999. Growth and improvement on zeolite. The 8th the Short Course of Feed Technology. pp. 269-288.
  23. Sunde, M. L. 1956. A relationship between protein level and energy level and chick ration. Poultry Science 35:350-354. https://doi.org/10.3382/ps.0350350
  24. Tucky, R., March, B. E. and Biely, J. 1958. Diet and rate of food passage in the growing chick. Poultry Science 37:786-792. https://doi.org/10.3382/ps.0370786
  25. Weaver, W. D. Jr. 1990. The effect of different levels of humidity and atr movement on litter conditions, ammonia levels, growth, and carcass quality for broiler chickens. Poul. Sci. 70:746-755.
  26. Willis, W. L., Quarlis, C. L. and Fagerberg, D. J. 1982. Evaluation of zeolite fed to male broiler chickens. Poultry Science 61: 438-442. https://doi.org/10.3382/ps.0610438