DOI QR코드

DOI QR Code

Structural and Optical Properties of ZnO/Glass Thin Films Grown by Radio-Frequency Magnetron Sputtering with a Powder Target

ZnO 분말 타겟을 스퍼터링하여 Glass 기판위에 증착한 ZnO 박막의 구조적, 광학적 특성

  • Sun, J.H. (Department of Advanced Materials Engineering, Chosun University) ;
  • Kang, H.C. (Department of Advanced Materials Engineering, Chosun University)
  • 선정호 (조선대학교 신소재공학과) ;
  • 강현철 (조선대학교 신소재공학과)
  • Published : 2009.09.30

Abstract

This paper reports the structural and optical properties of ZnO/glass thin films grown by radio-frequency magnetron sputtering with a powder target. In contrast to ZnO ceramic target typically used, a ZnO raw powder target was sputtered in this study. ZnO grew with the (0002) preferred orientation along the surface normal direction. Initially, the surface of ZnO thin films was flat considerably and then it became rougher as the thickness increased. The optical transmittance was as high as 88% in the range of 400-1000 nm. The bandgap energy of 3.23 eV at the 220 nm thick sample was estimated.

본 논문은 ZnO 분말 타겟을 스퍼터링하여 glass 기판 위에 증착한 ZnO 박막의 구조적, 광학적 특성을 보고한다. 소결된 ZnO ceramic target을 사용하는 보통의 radio-frequency magnetron sputtering과 달리 본 연구에서는 전처리과정이 필요하지 않은 ZnO 분말 target을 사용하였다. ZnO 박막은 wurtzite (0002) 우선배향면으로 성장하였다. 초기의 ZnO 박막은 매우 평평한 층구조로 증착되었고, 두께가 증가함에 따라 섬구조로 전이하였다. 400-1000 nm 광원에 대하여 평균 88% 이상의 광투과도를 나타내었으며, 220 nm 시편의 경우, 3.23 eV의 near bandedge emission 흡수단을 측정하였다.

Keywords

References

  1. V. A. Coleman and C. Jagadish, Zinc Oxide Bulk, Thin Films and Nanostructures-Processing, Properties and Applications edited by C. Jagadish, S. Pearton (Elsevier, Amsterdam, 2007), Ch. 1
  2. S.-S. Park, J.-M. Lee, S.-J. Kim, S.-W. Kim, M.-S. Yi, S.-H. Kim. S. Maeng, and S. Fujita, Nanotechnology 19, 245708 (2008) https://doi.org/10.1088/0957-4484/19/24/245708
  3. S. Komura, D. Kim, S. Wakaiki, and M. Nakayama, J. Kor. Phys. Soc. 53, 38 (2008)
  4. D. S. Park, J. H. Yu, J. H. Kim, T. S. Jeong, and C. J. Youn, J. Kor. Phys. Soc. 53, 3250 (2008) https://doi.org/10.3938/jkps.53.3250
  5. 김준제, 박준용, 김홍승, 이원재, 조채룡, Sae Mulli 58, 471 (2009)
  6. Y.-S. No, D.-H. Park, T.-W. Kim, J.-W. Choi, and W.-K. Choi, J. Kor. Vac. Soc. 18, 213 (2009) https://doi.org/10.5757/JKVS.2009.18.3.213
  7. W.-K. Hong, J. I. Sohn, D.-K. Hwang, S.-S. Kwon, G. Jo, S. Song, S.-M. Kim, H.-J. Ko, S.-J. Park, M. E. Welland, and T. Lee, Nano Lett. 8, 950 (2008) https://doi.org/10.1021/nl0731116
  8. J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, and S.-J. Park, Adv. Mater. 18, 2720 (2006) https://doi.org/10.1002/adma.200502633
  9. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 86, 243503 (2005) https://doi.org/10.1063/1.1949707
  10. Ray Swati, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983) https://doi.org/10.1063/1.332415
  11. C. Cuillen, J. Herrero, Thin Solid Films 510, 260 (2006) https://doi.org/10.1016/j.tsf.2005.12.273
  12. S. H. Cho, Y. J. Hong, C. G. Son, Y. G. Han, Y. H. Jeong, G. C. Gwon, B. H. Hong, G. S. Cho, and E. H. Choi, J. Kor. Vac. Soc. 18, 54 (2009) https://doi.org/10.5757/JKVS.2009.18.1.054
  13. A. Yamada and B. Sang, M. Konagai, Appl. Surf. Sci. 112, 216 (1997) https://doi.org/10.1016/S0169-4332(96)01022-7
  14. M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, Thin Solid Films 280, 20 (1996) https://doi.org/10.1016/0040-6090(95)08239-5
  15. N. M. Sbrockey and S.i Ganesan, III-Vs Review 17, 23 (2004) https://doi.org/10.1016/S0961-1290(04)00735-5
  16. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, and S. Niki, Thin Solid Films 431-432, 369 (2003) https://doi.org/10.1016/S0040-6090(03)00243-8
  17. J.-C. Lee, Y.-D. Kim, P.-K. Song, J.-H. Lee, Y.-S. Kim, and C.-S. Son, J. Kor. Phys. Soc. 53, 416 (2008)
  18. K. C. Park, D. Y. Ma, and K. H. Kim, Thin Solid Films 305, 201 (1997) https://doi.org/10.1016/S0040-6090(97)00215-0
  19. K. Wasa and S. Hayakawa, Handbook of sputter deposition technology (Noyes Publications, Westwood, 1992)
  20. S. H. Seo and H. C. Kang, submitted (2009)
  21. L. G. Parratt, Phys. Rev. 95, 359 (1954) https://doi.org/10.1103/PhysRev.95.359
  22. S. K. Sinha, Phys. Rev. B 38, 2297 (1988) https://doi.org/10.1103/PhysRevB.38.2297
  23. B. E. Warren, X-ray Diffraction (Addison-Wesley Pub. Co, 1969) p. 253
  24. I. W. Kim and K.-M. Lee, Nanotechnology 19, 355709 (2008) https://doi.org/10.1088/0957-4484/19/35/355709
  25. E. A. David and N. F. Mott, Philos. Mag. 22, 903 (1970) https://doi.org/10.1080/14786437008221061
  26. 김덕규, Sae Mulli 56, 143 (2008)
  27. S.-K. Kwon, D.-W. Kim, Y.-H. Jung, and B.-J. Lee, J. Kor. Phys. Soc. 55, 999 (2009) https://doi.org/10.3938/jkps.55.999