References
- B. O. Almroth, Automatic choice of global shape functions in structural analysis, AIAA J., 16 (1979), 525-528.
- J. Atwell and B. King, Reduced order controllers for spatially distributed systems via proper orthogonal decomposition, SIAM J. Sci. Comput. 26 (2004), 128-151. https://doi.org/10.1137/S1064827599360091
- A. K. Bangia, P. F. Batcho, I. G. Kevrekidis, and G. E. Karniadakis, Unsteady two-dimensional flows in complex geometries: comparative bifurcation studies with global eigen-function expansions, SIAM J. on Sci. Comput., 18 (1997), 775-805. https://doi.org/10.1137/S1064827595282246
- S. C. Brenner and L. R. Scott, The mathematical theroy of finite element methods, Springer-Verlag, New York, 1994.
- J. Borggaard, A. Hay, and D. Pelletier. Interval-based reduced-order models for unsteady uid ow. International Jounal of Numerical Analysis and Modeling, 4 (2007), 353367.
- J. M. Burgers, Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion, Trans. Roy. Neth. Acad. Sci. 17 (1939), Amsterdam, 1-53
- J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. in Appl. Mech, 1 (1948), 171-199.
- J. M. Burgers, Statistical problems connected with asymptotic solution of one-dimensional nonlinear diffusion equation, in M. Rosenblatt and C. van Atta (eds.), Statistical Models and Turbulence, Springer, Berlin (1972), 41.
- J. Burkardt, Q. Du, M. Gunzburger and H.-C. Lee, Reduced Order Modeling of Complex Systems, in Proceeding of the 20th Biennial Conference on Numerical Analysis, Ed. by D F Griffiths & G AWatson, University of Dundee, June, 2003, 29-38.
- J. A. Burns and S. Kang, A control problem for Burgers equation with bounded input/oqtput, ICASE Report 90-45, 1990, NASA Langley research Center, Hampton, VA; Nonlinear Dynamics, 2 (1991), 235-262.
- C. T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, New York, NY, 1984.
- Q. Du, M. Emelianenko, and L. Ju, "Convergenece of the Lolyd algorithm for computing centroidal Voronoi tessellations, SIAM J. Numer. Anal., 44 (2006),. 102-119. https://doi.org/10.1137/040617364
- Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi Teesellations: applications and algorithms, SIAM Review 41 (1999), 637-676. https://doi.org/10.1137/S0036144599352836
- Q. Du and M. Gunzburger, Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation, Proc. Fluids Engineering Division Summer Meeting, FEDSM2002-31051, ASME, 2002
- Q. Du and X.Wang, Tessellation and Clustering by Mixture Models and Their Parallel Implementations, in Proceeding of the fourth SIAM international conference on Data Mining, L ake Buena Vista, FL, 2004, SIAM, 257-268.
- J. S. Gibson, The riccati integral equations for optimal control problems on Hilbert spces, SIAM Jounal on the Control and Optimazation, bf 17 (1979), 537-565. https://doi.org/10.1137/0317039
- J. S. Gibson, and I. G. Rosen, Shifting the closed-loop spectrum in teh optimal linear quadratic regulator problem for hereditary system, Institute for Computer Applications for Science and Engineering, ICASE Report 86-16, 1986, NASA Langley Reserch Center, Hampton, VA.
- L. Ju, Q. Du and M. Gunzburger, Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations, Parallel Computing, 28 (2002), 1477-1500. https://doi.org/10.1016/S0167-8191(02)00151-5
- K. Kunisch and S. Volkwein, Control of burgers equation by a reduced order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999), 345-371. https://doi.org/10.1023/A:1021732508059
- I. Lasiecka, and R. Triggiani, Dirichlet boundary control problem for parabolic equation with quadratic cost: analticity and Riccati's feedbacksynthesis, SIAM J. Control and Optimization 21 (1983), 41-67. https://doi.org/10.1137/0321003
- H.-C. Lee, J. Burkardt, and M. Gunzburger, Centroidal Voronoi tessellation-based reduce-order modeling of complex systems, SIAM J. Sci. Comput. 28 (2006), 459-484.
- H.-C. Lee, J. Burkardt, and M. Gunzburger, POD and CVT-based Reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg. 196 (2006), 337-355. https://doi.org/10.1016/j.cma.2006.04.004
- S. Lloyd, Least squares quantization in PCM, IEEE Trans. Infor. Theory, 28 (1982), 129-137. https://doi.org/10.1109/TIT.1982.1056489
- J. MacQueen, Some methods for classification and analysis of multivariate observations, Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1 (1967), University of California, 281-297.
- H. Marrekchi, Dynamic compensators for a nonlinear conservation law, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 1993.
- D. A. Nagy, Modal representation of geometrically nonlinear behavior by the finite element method, Computers and Structures, 10 (1979), 683-688. https://doi.org/10.1016/0045-7949(79)90012-9
- A. K. Noor, Recent advances in reduction methods for nonlinear problems, Computers and Structures, 13 (1981), 31-44. https://doi.org/10.1016/0045-7949(81)90106-1
- A. K. Noor, C. M. Andersen, and J. M. Peters, Reduced basis technique for collapse analysis of shells, AIAA J., 19, 393-397.
- A. K. Noor and J. M. Peters, Reduced basis technique for nonlinear analysis of structures, AIAA J., 18, 455-462.
- J. S. Peterson, The reduced-basis method for incompressible viscous flow calculations, SIAM J. Scientific and Statistical computing, 10 (1989), 777-786. https://doi.org/10.1137/0910047
- R. Triggiani, and R. Bulrisch, Boundary feedback stabilizability parabolic equations, Appl. Math. Optim. 6 (1980), 201-220. https://doi.org/10.1007/BF01442895