TRANSFORMATION OF DIMENSIONLESS HEAT DIFFUSION EQUATION FOR THE SOLUTION OF DYNAMIC DOMAIN IN PHASE CHANGE PROBLEMS

  • Ashraf, Muhammad (DEPT OF MATH, COMSATS INST OF INFORMATION TECHNOLOGY) ;
  • Avila, R. (THERMAL FLUID LAB, FAC OF MECH ENG, NATL AUTONOMOUS UNIV OF MEXICO (UNAM)) ;
  • Raza, S. S. (GLOBAL CHANGE IMPACT STUDY CENTER)
  • Received : 2009.01.26
  • Accepted : 2009.02.26
  • Published : 2009.03.25

Abstract

In the present work transformation of dimensionless heat diffusion equation for the solution of moving boundary problems have been formulated. The formulation is based on 1-D, 2-D and 3-D, unsteady heat diffusion equations. These equations are rst turned int dimensionless form by using dimensionless quantities and their transformation was formulated in liquid and solid phases. The salient feature of this work is that during the transformation of dimensionless heat diffusion equation there arises a convective term $\tilde{v}$ which is responsible for the motion of interface in liquid as well as solid phase. In the transformed heat equation, a correction factor $\beta$ also arises naturally which gives the correct transformed flux at interface.

Keywords

References

  1. M. N. Ozisik, Boundary Value Problems of Heat Conductions, Seraton, Pennsylvania International Textbook Company, 1968
  2. J. Crank, Free and Moving Boundary Problems, New York Claredon Press, 1984.
  3. A. Rathjen and L. M. Jiji, Tarnsient Heat Transfer in Fins Undergoing Phase Transformation, Fourth International Heat Transfer Conference, Paris-Versailles,2, 1970.
  4. E. M. Ronquist and A. T. Patera, 'A Legender Spectral Element Method for the Stefan Problem', International Journal for Numerical Methods in Engineering, Vol,24, 2273-2299 (1987) https://doi.org/10.1002/nme.1620241204
  5. C. H. Li, D. R.. Jenkins, 'The effect of natural convection in solidification in tall tapered feeders', ANZIAM J. 44(E) ppC496-C511,2003. https://doi.org/10.21914/anziamj.v44i0.693
  6. R. M. Furzeland, 'A comparative study of numerical methods for moving boundary Problems', J. Inst. Math. Applic., 26, 411-429(1980). https://doi.org/10.1093/imamat/26.4.411
  7. D. R. Lynch and K. O'Neill, 'Continuously deforming finite elements for the solution of parabolic problems, with and without phase change', Int. J. numer. Methods eng., 17, 81-96 (1981) https://doi.org/10.1002/nme.1620170107
  8. A. T. Patera, 'A finite element/Green's function embedding technique applied to one dimensional change of phase heat transfer', Numer. Heat Transfer, 7, 241-247 (1984).
  9. Kees Vuik and Fred Vermolen, A conserving discretization for the free boundary in a two-dimensional Stefan problem J. Comp. Phys., 141, pp. 1-21, 1998. https://doi.org/10.1006/jcph.1998.5900
  10. C. Vuik and G. Segal and F.J. Vermolen A conserving discretization for a Stefan problem with an interface reaction at the free boundary Comput. Visual Sci., 3, pp. 109-114, 2000. https://doi.org/10.1007/s007910050058
  11. N.C.W. Kuijpers, F.J. Vermolen, K. Vuik, and S. van der Zwaag A model of the beta-AlFeSi to alpha-Al(FeMn)Si transformation in Al-Mg-Si alloys Materials Transactions, 44, pp. 1448-1456, 2003 https://doi.org/10.2320/matertrans.44.1448
  12. F.J. Vermolen and C. Vuik Solution of vector Stefan problems with cross-diffusion Journal of Computational and Applied Mathematics, 176, pp. 179-201,2005 https://doi.org/10.1016/j.cam.2004.07.011
  13. F.J. Vermolen, C. Vuik, E. Javierre and S. van der Zwaag Review on some Stefan Problems for Particle Dissolution Nonlinear Analysis: Modelling and Control, 10, pp. 257-292, 2005
  14. E. Javierre and C. Vuik and F.J. Vermolen and S. van der Zwaag A comparison of models for one-dimensional Stefan problems J. Comp. Appl. Math., 192, pp. 445-459, 2006. https://doi.org/10.1016/j.cam.2005.04.062