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UL, which is obtained by adding (t-weakening, W) (0 & w) A ) = & to
UL introduced by Metcalfe and Montagna in [8]. First, the t-weakening
uninorm logic ULw: (the UL with Wy) is introduced. The algebraic structures
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approach for proving standard .completeness in [3, 6].
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1. Introduction

In this paper we investigate the standard completeness (i.c.,
completeness on the real unit interval [0, 1]) of an axiomatic
extension of the uninorm logic UL. For this, we first recall
briefly some historical facts associated with fuzzy logic.

Many-valued logics with truth values in the real unit interval
[0, 1] have a long and distinguished history, and the well-known
examples are the infinite-valued systems L (Lukasiewicz logic)
and G (Godel-Dummett logic). In particular, in the last decade
Hajek [5] introduced BL (Basic fuzzy logic) and showed that E,
G, and II (Product logic) are its extensions. In this approach,
(multiplicative) conjunction connectives are interpreted by t-norms
(see [5]), which are commutative, associative, monotonic binary
functions with identity 1. BL is the most important logic of
continuous t-norms, and Lk, G, and 1l are emerging in this
respect as fundamental examples of logics based on continuous
t-norms. Esteva and Godo further [2] introduced the logic of
left-continuous  t-norms MTL (Monoidal t-norm logic), which
copes with the logic of lefi-continuous t-norms and their residua,
as a weakening of BL.

While fuzzy logics based on t-norms prove the weakening (W)
¢ — (y — @), some fuzzy logics (not based on t-norms) do
not. For instance, weakening-free fuzzy systems have been
recently introduced by Metcalfe. More exactly, Metcalfe (and
Montagna) [7, 8] introduced the weakening-free fuzzy logics UL,
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IUL (Involutive uninorm logic), UML (Uninorm mingle logic),
and IUML (Involutive uninorm mingle logic) as substructural
fuzzy logics based on uninorms, which are functions introduced
by Yager and Rybalov [10] as a generalization of t-norms where
the identity can lie anywhere in [0, 1].

Axiomatizations of the above t-norm and uninorm based logics
are complete with respect to (w.r.t) linearly ordered algebras; and
following Cintula [1], a (weakly implicative) logic L is said to be
fuzzy if L is complete w.rt linearly ordered matrices (or
algebras). Then, the above systems are all fuzzy logics in the
Cintula's sense. Notice that they are also complete (so called
standard complete) w.rt. algebras with lattice reduct {0, 1]. One
method introduced in [3, 6] for MTL and its axiomatic extensions
(calling it Jenei and Montagna’s method), consists of showing that
countable linearly ordered algebras of a given variety can be
embedded into linearly and densely ordered members of the same
variety, which can in turn be embedded into algebras with lattice
reduct [0, 1]. But this method (secems to) fail with associativity
for UL, and so does not (appear to) work in general for
weakening-free fuzzy logics such as UL based on uninorms.
Because of this negative fact Metcalfe and Montagna [8] instead
introduced a new approach for proving standard completeness of
uninorm logics, consisting of the following two steps: 1. after
extending logics with density rule, showing that such systems are
complete w.rt. linearly and densely ordered algebras, and for
particular extensions are complete w.r.t. those algebras with lattice

reduct [0, 1]; 2. giving a syntactic elimination of density rule (as
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a rule of the corresponding hypersequent calculus), i.e., showing
that if ¢ is derivable in a uninorm logic L extended with density
rule, then it is also derivable in L.

The starting point for the current work is the observation that
t-norms are uninorms. As we mentioned above, while t-norms
have unit at 1, uninorms does instead unit lying anywhere in [0,
1]. Then a natural concern arises about for which uninorm logics
Metcalfe and Montagna's strategy being able to work. Since MTL
is the logic of left-continuous t-norms, this strategy of course
works for t-norms, ie., uninorms having identity 1. We here
show that it works for other uninorms, i.c., uninorms not being
t-norms. More exactly, we show that Jenei and Montagna-style
approach may work for logics based on uninorms with a weak
form of weakening (called the t-weakening), i.e., for t-weakening
uninorm (based) logics.

The paper is organized as follows. In Section 2 we present
axiomatization - of ULw, which is obtained by adding
(t-weakening, Wy) (¢ & w) A t) = ¢ to UL; and in Section 3
then define algebraic structures of ULw, by a subvaricty of the
variety of t-weakening commutative residuated lattices (i.e., the
variety of ULwealgebras), and show that ULw, is complete w.r.t.
linearly ordered ULwealgebras. This will ensure that ULw, is
fuzzy in the Cintula's sense. After defining t-weakening uninorms
in Section 4, in Section 5 we finally provide standard
completeness results for ULwy, using the method introduced in [3,
6], i.., Jenei and Montagna's method.

For convenience, we shall adopt the notation and terminology
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similar to those in [1, 3, 5, 8], and assume being familiar with
them (together with results found in them).

2. Syntax

We base the t-weakening fuzzy logic ULw; on a countable
propositional language with formulas FOR built inductively as
usual from a set of propositional variables VAR, binary
connectives —, &, A, V, and constants T, F, f, t, with defined

connectives:

dft. ~d = ¢ — f, and
2. oy = (0 = ) A (v — ).

We may define t as f — f. We moreover define ¢" as ¢ &
-+ & ¢, n factors, where ¢ = ¢ A t. For the remainder we
shall follow the customary notation and terminology. We use the
axiom systems to provide a consequence relation.

We start with the following axiomatization of ULw, (UL plus
t-weakening) as a t-weakening (substructural) fuzzy logic.

Definition 2.1 ULw, consists of the following axiom schemes
and rules:

Al. ¢ — ¢ (self-implication, SI)

A2. (0 N w) — 0, (9 A w) — w (A-elimination, A-E)

A3, (=) (9—X) — (@—(wAX) (A-introduction, A-I)
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Ad. o — (® V v), v —>(d V w) (V-introduction, V-I)
AS. (00N (X)) — (@Vw)—X) (V-elimination, V-E)
A6. & — T (verum ex quolibet, VE)
A7. F — ¢ (ex falso quadlibet, EF)
AS. @ & v) — (w & &) (&-commutativity, &-C)
Ad. (d & t) & & (push and pop, PP) ;
A10. (¢ = ) = (v > X) = (§ — X)) (suffixing, SF)
AlL (¢ = (¢ = X)) < (& & w) = X) (residuation, RE)
Al2. (¢ & w)y — ¢ (t-weakening, Wy)
A13. for each n, (0—w)", V (w—9)" ("-prelinearity, PL").

® — y, & + y (modus ponens, mp)

o, v F & A w (adjunction, adj)

Propesitien 2.2 ULw, proves:
M @& Ww&X)<—(d&w) & X) (&-associativity, AS).

In ULw,, f can be defined as ~t and vice versa. A theory
over ULw, is a set T. of formulas. A proof in a sequence of
formulas whose each member is either an axiom of ULw; or a
member of T or follows from some preceding members of the
sequence using the rules (mp) and (adj). T + ¢, more exactly . T
Fuwwe ®, means that ¢ is provable in T w.rt ULw, ie., there
is a ULweproof of ¢ in T. The relevant deduction. theorem
(RDT) for ULw, is as follows:

Proposition 2.3 Let T be a theory, and ¢, y formulas. T- U
{®} FuyLw @ iff there is n such that T Fywm % — w.
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Proof: See [9]. [

A theory T is inconsistent if T + F; otherwise it is consistent.
For convenience, “~”, “A”, “V” and “—” are used

ambiguously as propositional connectives and as algebraic

operators, but context should make their meaning clear.

3. Semantics

Suitable algebraic structures for ULw; are obtained as a

subvariety of the variety of commutative monoidal residuated
lattices.

Definition 3.1 A pointed bounded commutative residuated
t-weakening lattice is a structure A = (A, T, L, T, Lg A,
V, * - such that:

O @A, T, L, A, V) is a bounded lattice with top element
T and bottom element L,
(I) (A, *, T satisfies for some T, and for all x, y, z € A,
(a) x *y =y * x (commutativity)
(b) T¢* x = x (identity)
() x *(y*z)=(x*y)*z (associativity).
M)y £ x—>ziff x*y <z forall x, yyz € A
(residuation).
V) x*y) A T¢ < x, forall x,y €A (tweakening).
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(A, *, Ty satisfying (II-b, ¢) is a monoid. Thus (A, *, Ty
satisfying (Il-a, b, ¢) is a commutative monoid. To define the
above lattice we may take in place of (III) a family of equations
as in [5]. Using — and L, we can define T(as Ly — Ly and
~.as in (df1). In the lattice, ~ is a weak negation in the sense
that for all x, x < ~ ~x holds in.it. Then, ULwalgebra whose

class characterizes ULw; is defined as follows.

Definition 3.2 (ULwealgebra) A ULweralgebra is a pointed
bounded commutative residuated t-weakening lattice satisfying the
condition: for all x, y, and for each n (= 1),

)y Tt < x =)+ V ¥ = x)"e

ULwealgebra is said to be linearly ordered if the ordering of
its algebra is linear, ie., x < y or y < x (equivalently, x Ay
= x or x Ny =y) for each pair x, y. In linearly ordered
algebras, we in particular call monoids satisfying (IV) t-weakening

monoids.

Definition 3.3 (Evaluation) Let 4 be an algebra. An
d-evaluation is a function v : FOR — o satisfying:

v(® = ) = v(d) — v(w),

V(e A w) = v(d) A v(w),

vV w) = v(d) V v(w),

V(¢ & ) = V() * v(y),

v(F) = 1,

v(f) = Ly,
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(and hence v(~Q) = ~v(9), v(T) = T, and v(t) = Ty).

- Definition 3.4 Let 4 be a ULwealgebra, T a theory, ¢ a
formula, and K a class of ULwalgebras.

(i) (Tautology) & is a Trtautology in 4, briefly an d-tautology
(or d-valid), if v(p) = T, for each #-evaluation v.

(ii) (Model) An d-evaluation v is an d-model of T if v(}) =
Ty for each ¢ € T. By Mod(T, 4), we denote the class of
d-models of T.

(iii) (Semantic consequence) O is a semantic consequence of T
wrt. K denoting by T Ex ¢, if Mod(T, &) = Mod(T U
{®}, &) for each 4 € K

Definition 3.5 (ULwealgebra) Let 4, T, and ¢ be as in
Definition 34. 4 is a ULwralgebra iff whenever ¢ s
ULweprovable in T (ie. T Foywe ), it is a semantic
consequence of T w.rt the set {4} (ie. TEy,; ), 4 a
ULwy-algebra. By MOD(I)(ULW;), we denote the class of (linearly
ordered) ULwyalgebras. Finally, we write T O ® in place
of T Ewonwwy ¢.

Note that since each condition for the ULwsalgebra has a form
of equation or can be defined in equation (exercise), it can be
ensured that the class of all ULwealgebras is a variety.

Let A be a ULwralgebra. We first show that classes of
provably equivalent formulas form a ULwealgebra. Let T be a
fixed theory over ULw, For each formula ¢, let []r be the set
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of all formulas y such that T Fywe & < w (formulas
T-provably equivalent to ¢). At is the set of all the classes []r.
We define that [¢]r — [w]r = [® — ¢ln, [0l * [wlr = [® &
W, (Ol A [wlr = [0 A wlr, [ V [wh = [ V yly, L =
[Flr, T = [Th, T¢= [t]r, and L = [f]r. By Ar, we denote this
algebra.

Proposition 3.6 For T a theory over L, At is a ULwalgebra.

Proof: Note that Al to A7 ensure that A and V satisfy (I) in
Definition 3.1; that AS, A8, A9 ensure that & satisfies (II); that
All, A12 and Al3 ensure that (I, (IV), and (pl") hold. It is
obvious that [¢]r < [wlr iff T Fyw & <« (@ A w) ff T +
viwt & — w. Finally recall that At is a ULwealgebra iff T +
viwt ¥ implies T Fyw v, and observe that for ¢ in T, since T
Fouw t — ¢, it follows that [t} < [®]r. Thus it is a
ULwalgebra. [

We next note that the nomenclature of the prelinearity condition
is explained by the subdirect representation theorem below.

‘Propesition 3.7 Each ULwealgebra is a subdirect product of
linearly ordered ULw-algebras.

Proof: Its proof is analogous to that of Lemma 3.7 in [1]. []

Theorem 3.8 (Strong completeness) Let T be a theory, and ¢ a
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formula. T Fypw ¢ iff T Fuwwe ¢ iff T E'vewt O

Proof: (i) T Fuywwe ¢ iff T Fuwwe &. Left to right follows
from definition. Right to left is as follows: from Proposition 3.6,
we obtain Ay € MOD(L), and for Ar-evaluation v defined as v
(¢) = [w]r, it holds that v € Mod(T, Ar). Thus, since from T
Euwwe © we obtain that [d]r = v(®) = T, T Fuwm t = .
Then, since T Fuypwe t, by (mp) T Fyrwe §, as required.

(i) T Eviw ® iff T E'yuw . It follows from Proposition 3.7. [

4. t-Weakening uninorms and their residua

In this section, using I, 0, and some 1, and 0y in the real
unit interval [0, 1], we shall express T, L1, T, and Ly
respectively. We also define standard ULwralgebras and

t-weakening uninorms on [0, 1].

Definition 4.1 A ULwealgebra is standard iff its lattice reduct
is [0, 1}.

In standard ULwealgebras the monoid operator * is a

t-weakening uninorm.

Definition 4.2 A t-weakening uninorm is a function O : [0, 1]2
— [0, 1] such that for some 1, € [0, 1] and for all X, y, z €
[0, 1}
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(@ x Oy =y O x (commutativity),

(b) x O (y O z) = (x O y) O z (associativity),
(¢c) x < y implies x O z < y O z (monotonicity),
(d) 1y O x = x (identity), and

(¢) min{x O vy, 1} < x (t-weakening).

The function O satisfying (a) to (d) is a uninorm, and uninorm
satisfying (l-identity) 1, = 1 is a t-norm. Notice that
(t-weakening) and (l-identity) ensure that for all x, y € [0, 1],

x Oy < min{x, y} or max{x, y} < x Oy, and
x Oy < min{x, y}, respectively.

This shows that t-norm is a t-weakening uninorm.

O is residuated iff there is — : [0, 1]2 — [0, 1] satisfying
(residuation) on [0, 1]. A uninorm is called conjunctive if 0 O 1
= 0, and disjunctive if 0 O 1 = 1. For some 0 € [0, 1], a
residuated uninorm has weak negation n defined as n(x) = x —
0 because x O (x — 0f) < O holds in it and so by residuation
X O@x—0) £ 0iff x £ (x— 0 — 01

The most important property of a uninorm is that left-continuity
holds in it. Given a uninorm O, residuated implication —
determined by O is defined as x — y := sup{z € [0, 1}: x O
z < y} for all x, y € [0, 1]. Then, as in uninorm, we can
show that for any t-weakening uninorm O, O -and its residuated
implication — form a residuated pair iff O is conjunctive and
left-continuous in both arguments (cf. see Proposition 5.4.2 [4]).
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5. Standard completeness

We first show that finite or countable linearly ordered
ULwralgebras are embeddable into a standard algebra. (For

convenience, we add less than relation symbol to such algebras.)

Proposition 5.1 For every finite or countable linearly ordered
ULwealgebra A = (A, <4, T, L, Ty, Ly A, V, *, —), there
is a countable ordered set X, a binary operation O, and a map f
from A into X such that the following conditions hold:

(I} X is densely ordered, and has a maximum Max, a

minimum Min, and special elements ¢, 0.

(1) (X, O, <, e¢) is a linearly ordered monotonic commutative

t-weakening monoid.

(Il) O is conjunctive and left-continuous with respect to the

order topology on (X, X). '

(IV) f is an embedding of the structure (A, <a, T, 1, T,

Ly, A, V, %) into (X, <, Max, Min, e, d, min, max,
O), and for all m, n € A, f(m — n) is the residuum of
f(m) and f(n) in (X, <, Max, Min, ¢, ¢, max, min, O).

Proof: For convenience, we assume A as a subset of Q N [0,
1] with finite or countable elements, where 0 and 1 are least and
greatest elements and some 1; and any 0 are special elements,
each of which corresponds to T, L, and some T, L
respectively. Let
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X={mxxme<E A\ {0(=L}adx € Q N (0, m}
U {0, 0)}.

For (m, x), (n, y) € X, we define:
(m, x) < (n, y) iff either m <, n, or m = n and x < y.

It is clear that < is a linear order with maximum (1, 1),
minimum (0, 0), and special elements e = (I, 1¢), d = (0 0y.
Furthermore, < is dense: let (m, x) < (n, y). Then either m <j
norm =, n and x < y. If the first is the case, then (m, x) <
(n, y22) < (n, y). Otherwise, then (m, x) < (n, x+y/2) < (n,
y). This proves (I).

For convenience, we will from now on drop the index A in <j
and =,, if we need not distinguish them. But context should
make clear what we mean.

Define for (m, x), (n, y) € X:

(mx) O (ny) = max{(mx), (n,y)} f m * n=m V n, m#n,
and
(m,x) < eor(ny X ¢
min{(m,x), (n,y)} f m *n=m A i, and
(m, x) < eor(ny) X ¢

(m * n, m * n) otherwise.

We verify that O satisfies (II) (noting that t-weakening of +
ensures that (MM) for al m, n € A, m *n < m A norm
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Vn <m*n)

(1) Commutativity. It is obvious that O is commutative.

(2) Identity. We prove that (1i, 1¢) is the unit element, ie., (1
ly O (m, x) = (m, x). (i) Let (1, 1) < (m, x). Since T, *
m=m= T;V m, (I, I O (m, x) = max{(ly, 1y, (m, x)}
= (m, x). (ii) Let (m, x) < (I 1. Since T¢* m =m = T,
A m, (I, 1) O (m, x) = min{(l,, 1y, (m, x)} = (m, x).

(3) Monotonicity. Since O is commutative, it suffices to prove
that if (I, x) < (m, y), then for all (n, z) € X, (I, x) O (n,

z) < (m, y) O (n, z). We distinguish several cases:

@Case().l*n=1Vnandm*n=m V n

Subcase (i-a). (1, x) < e or (n, z) < e.

(@l)y (m,y) < eor(nz) <elf(nz) < e < (,x) <
(m, y), (I, x) © (n, 2) = max{(l, x), (n, 2)} = (I, x) < (m,
y) = max{(m, y), (n, z)} = (m, y) O (n, 2). If (|, x) < (m,
y) e < (n z), (I, x) O (n, z) = max{(l, x), (n, z)} = (n,
z) = max{(m, y), (n, z2)} = (m, y) O (n, z). If (I, x), (n, z)
e < (my) x) O z)=min{l x), (n, 2} < (m,
y)=(m,y) O (n, 2). If (I, x), (m, y), (n, z) < e, 1l =m =
n and so (I, x) O (n, z) = min{(l, x), (n, z)} < min{(m, y),
(n, 2)} = (m, y) O (n, 2).

(a-2) (m, y), (n, z) > e. Then (I, x) < ¢ < (m, y), (n, z).
Thus (I, x) O (n, z) = max{(l, x), (n, z)} = (n, z) < (m V
n,m V n)=(my) O (n,z).

Subcase (i-b). (1, x), (n, z) > e.

(b-1) (m, y) < e or (n, z) < e. It is not the case because (|,
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x), (n, z) > e implies that m < 1; and so | > m, contrary to
the supposition that (I, x) < (m, y).

(b-2) (m, y), (n,z) > e. Then (1, x) O (n,z)=(1 V n, 1V
n) <mVanamVn=(@my) O,z

@ Case (i) | *n=1Anadm*n=m A n lts proof
is analogous to that of Case (i).

@ Case (iii). | *n=1Vnandm*n+#m V n We need
to consider the subcases (a) m * n = m A nand (b)) m * n
Zm A n

Subcase (iii-a). m * n =m A n. Sincem * n =m A n and
som # n, | =n<m, 1, Then (I, x) O (n, z) = min{(l,. x),
(n, 2)} < min{(m, y), (n, 2)} = (m, y) O (n, 2).

Subcase (iii-b). m * n # m A n:

(b-1) m * n > 1, Then, since | * n < m * n and (m, y) O
(n,z)=(m *n,m*n), (1, x) OMmz) X (my) O(n,az)
(b-2) m * n < 1, Since this implies that | = n =1%* n < m
*n <1, (Lx) Oz < (my) O,z

@ Case(iv,!*n=1Vnadm®*n=m V n lts proof
is analogous to that of Case (iii).

@ Case (v).1*n#1VnlAnadm?*n=#mVn,
m A n ;

Subcase (v-a). | * n, m *n> 1. (, x) O (n,2) = (1 * n, |
*n) < (m*nm?*n=(m,y O (noz).
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Subcase (v-b). | * n < 1, <m * n Since | * n <m * n, (|,
x) O {n,z) < (m,y) O (n, z).

Subcase (v-c). | * n > 1y > m * n. By the supposition, this is
not the case.

Subcase (v-d). Otherwise, ie, | * n, m * n < 1. (I, x) O (n,
y=({*n1*p) < (m*nm*n=(my O :2).

(4) e-Weakening. We assume that for all (m, x), (n, y) € X,
(m, x) O (n, y) X e, and show that (m, x) O (n, y) < (m,
x) (noting that by t-weakening of *, m * n=m V n,m #
1, is not the case.) (i) Letm * n=m A n-< 1. Then, {m,
x) O (n, y) = min{(m, %), (n, y)} < (m, x). (ii) Let m * n
#m A n. By (MM), m * n <m A n. Hence (m, x} O (n,
y) < (m, x).

(5) Associativity. We show that for all (I, x), (m, y), (n, z) €
X,

(1, x) O ((m,y) O (m2z)=(,x) O(m,y)O @ 2z
(AS). |

Without further mention, we will use the fact that * is

associative and t-weakening. We distinguish several cases:

@ Case (i). 1 * m * n) = V(}, m, n). Then by (MM) and
the supposition, either 1 < I, m, n and 1, <1 * (m * nj or 1,
=2 L,m,nand | = m = n. Let the first be the case. If [, =1=

m<mn l¢y=1=n<m, or Iy = m = n <1, then both sides of
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(AS) are equal to max{(l, x), (m, y), (n, z)}. Otherwise, both
sides of (AS) are equal to (1 * (m * n), | * (m * n)) (= (V(,
m, n), V(I, m, n))). Let the second be the case. Then both sides
of (AS) are equal to min{(l, x), (m, y), (n, z)}.

@ Case (i) | *(m *n)= A (L,mn).Ifl;,<]l=m=n,
both sides of (AS) are equal to (1 * (m * n), | * (m * n)) (= (I,
1)). Otherwise, both sides of (AS) are equal to min{(}, x), (m, y),
(n, 2)}.

@ Case (iii). | * (m * n) = V(, m, n), A (, m, n), and 1
¥ (m * n) € {l, m, n}. This is not the case because V(l, m, n)
<I*m*norl*(m*n < A (I, my n) by (MM).

@ Case (iv). | * (m * n) & {I, m, n} and either | ¥ (m * n)
IlV{m*n)=m*norl*(m?*n)=1A(m*n)=m*
n. Then, since (MM) ensures that either 1, < I, m V n<m *

norly>1Lm A n>m* n, both sides of (AS) are equal to

Il

(m * n, m * n).

@ Case (v).1*(m*n) & {, mn}and | * (m*n) = I
V (m *n), !l A (m * n). Then, we need to consider the cases |
*(m *n)>1lcand 1 * (m * n) < 1. In an analogy to the
above, we can prove this.

We then prove (III). Since 0 * 1 = 0, it is immediate that O
is conjunctive, i.e., (0, 0) O (1, 1) = (0, 0).
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For left-continuity of O, we prove that if <(mj, x;): i € N> is
any increasing sequence (w.rt. <) of elements of X such that
sup{(mj, x;}: i € N} = (m, x), then for all (n, y) € X, sup{(m;,
) O o,y 1 € N} = (m, x) O (n, y). Note that for almost
all i, mj = m (otherwise (m, x/2) < (m, x) would be an upper
bound of the sequence <(mj, xi): i € N>). By deleting a finite
number of elements of the sequence <(m;, xj): i € N>, we can
suppose that for all i, m; = m and that x = sup{x; i € N}.
Then we need to consider the following cases:

Case (i), m *n=m V n Incase m > liorn > 1, (m,
x) O (n, y) = max{(m, x), (n, y)}, (mj, x) O (n, y) =
max{(m;, x), (n, y)}, and left-continuity follows from
left-continuity of max operation. Otherwise, ie., if m = n < 1,
(m, x) O (n, y) = min{(m, x), (n, y)} and for all i, (m;, x;) O
(n, y) = (min{(m;, x), (n, y)}), and left-continuity follows from
left-continuity of min operation.

Case (ii). m * n = m A n. Its proof is analogous to that of
Case (i).

Case (ii). m * n #[h V n, m A n, and m #[d. Then, (m,
Xx) O (n,y)=(m *n, m* n) and for all i, (m;, x;i) O (n, y)
=(m *n,m*n =(m?*n m*n) Thus (m, x) O (n, y) =
(mi, xj) O (n, y).

This completes the proof of (III).

We finally prove (IV). First define for every m € A,

flm) = (m, m).
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It is clear that f is increasing and so -one-to-one. f(1), f(0),
f(19, and f(0g) are top, bottom, and special elements of (X, X);
and f(1¢) is the unit element of O. We then show that f(m) O
f(n) = fim * n):

Case (1). ¢ < m, n. f{m) O f(n) = (m, m) O (n, n) = (m *
n, m * n) = f(m * n)

Case (ii). m < l¢ < n.

Subcase (ii-a). m * n =m V n. flm) O f(n) = (m, m) O (n,
n) = max{(m, m), (n, n)} = (n, n) = f(n) = f{m * n).

Subcase (ii-b). m * n = m A n. f(m) O f(n) = (m, m) O (n,
n) = min{(m, m), (n, n)} = (m, m) = f(m) = f(m * n).

- Subcase (ii-c). m * n #0h V n,m A n f(m) O f(n) = (m,
m) O (n,n)=(m *n, m * n) = f(m * n).

Case (ii)). n < 1y < m. Its proof is analogous to that of Case
(ii). ;

Case (iv). 1y = m, n. Its proof is analogous to that of Case
(ii). Thus f is an embedding of partially ordered monoids. It
remains to prove that for every , m, n € A, f(l — m) is the
residuum of f(I) and f(m) wrt O, ie., (i) f{(I) O f1 = m) <
f(m), and (ii) if f(I) O (n, z) X f(m), then (n, z) < f(1 — m).

(i). Consider the case 1¢ <1 < m. f(I) O fl > m) = (I, 1)
O(l-ml-m=0*({1—>m),]1*({—m) L (m m)
= f(m). Proof of the other cases is analogous.

(ii). By contraposition, we prove this. Suppose. that-f(I' — m)
< (m z), ie, 1 > m, I > m) < (n, z). Since | — m is the
residuum of 1 and m in A, m. <1 * n. Thus (m, m) < (I, 1) O

(n, z). This completes the proof. []
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Proposition 5.2 Every countable linearly ordered ULw-algebra
can be embedded into a standard algebra.

Proof: In an analogy to the proof of Theorem 3.2 in [6], we
prove this. Let X, A, etc. be as in Proposition 5.1. Since (X, X)
is a countable, dense, linearly-ordered set with maximum and
minimum, it is order isomorphic to (Q N [0, 1], <). Let g be
such an isomorphism. If (I), (II), (III), and (IV) hold, letting for
o, B0 1], a 0 B=ggla O g'B), and, for all m &
A, f'(m) = g(f(m)), we obtain that Q N [0, 1], <, 1, 0, 1y, O
O’, f satisfy the conditions (I) to (IV) of Proposition 5.1
whenever X, <, Max, Min, ¢, d, O, and f do. Thus we can

without loss of generality assume that X = Q N [0, 1] and < =
<

Now we define for a, § & [0, 1],

a 07 g = SUpxexx<aSUPyexiy<p X Oy.

Commutativity of O” follows from that of O. Its
monotonicity, identity, and e-weakening are easy consequences of
the definition. Furthermore, it follows from the definition that O
" is conjunctive, ie, 0 O” 1 = 0.

We prove left-continuity. Suppose that <a,; n € N>, <Bu n
& N> are increasing sequences of reals in [0, 1] such that sup{a
0 &€ N} = o and sup{Bn: n & N} = . By the monotonicity
of O”, supfa, O B} = a O” B. Since the restriction of

"

O to Q N [0, 1] is left-continuous, we obtain that
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a0 B=sup{q 0" rqreQN[I,q=<ar<=< B
=supfq O" rnqre QNI 1}, qg<ar<p}

For each q < a, r < B, there is n such that q¢ < g, and 1 < B
» Thus,

supfan O” Bun €EN} 2 supfq O" r1gr € Q N[0,
1,g<gr<B=a0" B

Hence, O " is a left-continuous e-weakening uninorm on [0, 1].

It is an easy comsequence of the definition that O ” extends
O. By (I) to (IV), fis an embedding of (A, <, T, 1, Ty L
6 A, V, ®)into ([0, 1], <, 1,0, 1, 0 min, max, O").
Moreover, O ” has a residuum, calling it —.

We finally prove that for x, y € A, fix — y) = f(x) = f(y).
By (IV), f(x — y) is the residuum of f(x) and f(y) in (Q N [0,
1], O, £, 1,0, 1, 0y, min, max, O ”). Thus

fx) 0" fix = y) = f(x) O fix = y) < f(y).

Suppose toward contradiction that there is a > f(x — y) such
that a O fix) < f(y). Since Q N [0, 1] is dense in [0, 1],
there is ¢ € Q N [0, 1] such that f(x — y) < ¢ < a. Hence
q.O” f(x) =q O f(x) < f(y), contradicting (IV). [

.Theorem 5.3 (Strong standard completeness) For ULwy, the
following are equivalent:
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(DT Foww ¢
(2) For every standard ULw-algebra and evaluation v, if v(y)
> I¢for all y € T, then v($) = 1.

Proof: (1) to (2) follows from definition. We prove (2) to (1).
Let ¢ be a formula such that T Fyw ¢, A a linearly ordered
ULwealgebra, and v an evaluation in A such that v(y) > T, for
all y € T and v(p) < T, Let f be the embedding of A into
the standard ULwealgebra as in proof of Proposition 5.2. Then f
O v is an evaluation into the standard ULwalgebra such that f
O v(y) = lyand yet f O v(¢) < 1. I

Theorem 5.3 ensures that ULw, s complete w.rt.
left-continuous conjunctive t-weakening uninorms and their residua,
ie., for each formula ¢, if Fyww O, then there is a
left-continuous conjunctive t-weakening uninorm O and an
" <, 1,0, 1, 0f), where — is
the residuvum of O ", such that v(¢) < 1.

evaluation v into ({0, 1], ©

6. Concluding remark

We here investigated (not merely algebraic completeness but
also) standard completeness for ULw, This work can be
generalized to the systems, which are axiomatic extensions of

ULw, We shall investigate this in some subsequent paper. .
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