머신러닝을 활용한 모돈의 생산성 예측모델

Forecasting Sow's Productivity using the Machine Learning Models

  • 투고 : 2009.10.30
  • 심사 : 2009.12.18
  • 발행 : 2009.12.30

초록

The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

키워드

참고문헌

  1. 대한양돈협회. (2005). 전업 양돈농가 실태보고서. 대한양돈협회.
  2. 대한양돈협회. (2007). 2007년 양돈장 질병보고서. Pig & Pork.
  3. 이용범. (2004). 데이타마이닝의 농업적 활용. Journal of Biosystems Engineering 29(1): 79-96. https://doi.org/10.5307/JBE.2004.29.1.079
  4. Bentz, Y., and Merunkay, D. (2000). Neural Networks and the Multinomial Logit for Branch Choice Modeling: a Hybrid Approach. Journal of Forecasting 19(3): 177-200. https://doi.org/10.1002/(SICI)1099-131X(200004)19:3<177::AID-FOR738>3.0.CO;2-6
  5. Bitchler, M. and Kiss, C. (2004). A Comparison of Logistic Regression, k-Nearest Neighbor, and Decision Tree Induction for Campaign Management. Proceedings of the Tenth Americas Conference on Information Systems. New York. August: 1918-1925.
  6. Bound, D., and Ross, D. (1997). Forecasting Customer Response with Neural Network. Handbook of Neural Computation. G6.2. 1-7.
  7. Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics 24(6): 2350-2383. https://doi.org/10.1214/aos/1032181158
  8. Breiman, L., J. Friedman, Olshen, R., and Stone C. (1984). Classification and Regression and Regression Trees. Belmont, CA: Wadsworth.
  9. Cho, S., M. Jang, et al. (1997). Virtural sample generation using a population of networks. Neural Processing Letters 12: 88-89.
  10. Chung, H. M. and P. Gray. (1999). Data Mining. Journal of Management Information Systems 16(1): 11-17.
  11. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control. Signals, and Systems 2(4): 303-314. https://doi.org/10.1007/BF02551274
  12. Freund, Y. and R. E. Schapire. (1996). Game theory, on-line prediction and boosting. Proceedings of the Annual ACM Conference on Computational Learning Theory.
  13. Freund, Y. and R. E. Schapire. (1999). Large margin classification using the perceptron algorithm. Machine Learning 37(3): 277-296. https://doi.org/10.1023/A:1007662407062
  14. Gray, P. and H. J. Watson. (1998). Professional Briefings...Present and Future Directions in Data Warehousing. Database for Advances in Information Systems 29(3): 83-90. https://doi.org/10.1145/313310.313345
  15. Gray, P. and H. J. Watson. (1998). Decision Support in the Data Warehouse. N.J.: Upper Saddle River.
  16. Han, J. and M. Kamber. (2001). Data Mining: Concepts and Techniques San Francisco. Morgan-Kaufmann Academic Press.
  17. Hand, D. J. (1998). Data Mining: Statistics and More?. The American Statistician 52(2): 112-118.
  18. Hornik, K., M. Stinchcombe, et al. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3(5): 551-560. https://doi.org/10.1016/0893-6080(90)90005-6
  19. Hunt, E., J. Martin, et al. (1966). Experiments in induction. New York: Academic Press.
  20. Iddings, R.K., and Apps, J.W. (1990). What Influences Farmers' Computer Use?. Journal of Extension 28(1)(http://www.joe.org/joe/1990spring/a4.html.2004/10/1).
  21. Jayas, D. S., J. Paliwal, et al. (2000). Multi-layer neural networks for image analysis of agricultural products. Journal of Agricultural and Engineering Research 77(2): 119-128. https://doi.org/10.1006/jaer.2000.0559
  22. Kass, G. (2001). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics 29(1980): 119-127.
  23. Kirchner, K., K. H. Tolle, et al. (2004a). Decision tree technique applied to pig farming datasets. Livestock Production Science 90(2-3): 191-200. https://doi.org/10.1016/j.livprodsci.2004.04.003
  24. Kirchner, K., K. H. Tolle, et al. (2004b). The analysis of simulated sow herd datasets using decision tree technique. Computers and Electronics in Agriculture 42(2): 111-127. https://doi.org/10.1016/S0168-1699(03)00119-4
  25. Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine 23(1): 89-109. https://doi.org/10.1016/S0933-3657(01)00077-X
  26. Kuhlmann, F., and Brodersen, C. (2001). Information technology and farm management: developments and perspectives. Computers and Electronics in Agriculture 30: 71-83. https://doi.org/10.1016/S0168-1699(00)00157-5
  27. Langley, P. and H. A. Simon. (1995). Applications of machine learning and rule induction. Communications of the ACM 38(11): 54-64. https://doi.org/10.1145/219717.219768
  28. Levenberg, K. (1994). A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quarterly Journal of Applied Mathematics 2(2):164-168.
  29. Levin, N. and Zahavi, J. (2001). Predictive Modeling Using Segmentation. Journal of Interactive marketing 15: 2-22. https://doi.org/10.1002/dir.1012
  30. Lim, T.S., Loh, W.Y., and Shin, Y.S. (2000). A comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Machine Learning 40: 203-228. https://doi.org/10.1023/A:1007608224229
  31. McQueen, R. J., S. R. Garner, et al. (1995). Applying machine learning to agricultural data. Comput. Electron. Agric. 12(4): 275-293. https://doi.org/10.1016/0168-1699(95)98601-9
  32. Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.
  33. Moutinho, L., Curry, B., Davies, F., and Rita, P. (1994). Neural Network in Marketing. New York: Routledge.
  34. Murthy, K. S. (1998). Automatic Construction of Decision Trees from Data: A Multi-disciplinary Survey. Data Mining and Knowledge Discovery 2: 345-389. https://doi.org/10.1023/A:1009744630224
  35. Nilsson, N. (1965). Learning machines. New York: McGraw-Hill.
  36. Peacock, P. R. (1998). Data mining in marketing: Part 1. Marketing Management 6(4): 9.
  37. Peacock, P. R. (1998). Data mining in marketing: Part 2. Marketing Management 7(1): 15.
  38. Pietersma, D., R. Lacroix, et al. (2003). Induction and evaluation of decision trees for lactation curve analysis. Computers and Electronics in Agriculture 38(1): 19-32. https://doi.org/10.1016/S0168-1699(02)00105-9
  39. Quinlan, J. R. (1993). C4.5: Program of Machine Learning. CA.: Morgan Kaufman Publishing.
  40. Rumelhart, D. E., B. Widrow, et al. (1994). Basic ideas in neural networks. Communications of the ACM 37(3): 87-92. https://doi.org/10.1145/175247.175256
  41. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal Representation by Error Propagation. in Parallel Distributied Processing: Explorations in the Microstructure of Cognition. D.E. Rumelhart and J.A. McClelland(Eds.). Cambridge. MA: MIT Press.
  42. Schultz, A., R. Wieland, et al. (2000). Neural networks in agroecological modelling-Stylish application or helpful tool?. Computers and Electronics in Agriculture 29(1-2): 73-97. https://doi.org/10.1016/S0168-1699(00)00137-X
  43. Scott Mitchell, R., L. A. Smith, et al. (1996). An investigation into the use of machine learning for determining oestrus in cows. Computers and Electronics in Agriculture 15(3): 195-213. https://doi.org/10.1016/0168-1699(96)00016-6
  44. Sonquist, J., Baker, E., and Morgan, J. N. (1971). Searching for Structure, Survey Research Center, Ann Arbor: University of Michigan.