참고문헌
- 대한양돈협회. (2005). 전업 양돈농가 실태보고서. 대한양돈협회.
- 대한양돈협회. (2007). 2007년 양돈장 질병보고서. Pig & Pork.
- 이용범. (2004). 데이타마이닝의 농업적 활용. Journal of Biosystems Engineering 29(1): 79-96. https://doi.org/10.5307/JBE.2004.29.1.079
- Bentz, Y., and Merunkay, D. (2000). Neural Networks and the Multinomial Logit for Branch Choice Modeling: a Hybrid Approach. Journal of Forecasting 19(3): 177-200. https://doi.org/10.1002/(SICI)1099-131X(200004)19:3<177::AID-FOR738>3.0.CO;2-6
- Bitchler, M. and Kiss, C. (2004). A Comparison of Logistic Regression, k-Nearest Neighbor, and Decision Tree Induction for Campaign Management. Proceedings of the Tenth Americas Conference on Information Systems. New York. August: 1918-1925.
- Bound, D., and Ross, D. (1997). Forecasting Customer Response with Neural Network. Handbook of Neural Computation. G6.2. 1-7.
- Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics 24(6): 2350-2383. https://doi.org/10.1214/aos/1032181158
- Breiman, L., J. Friedman, Olshen, R., and Stone C. (1984). Classification and Regression and Regression Trees. Belmont, CA: Wadsworth.
- Cho, S., M. Jang, et al. (1997). Virtural sample generation using a population of networks. Neural Processing Letters 12: 88-89.
- Chung, H. M. and P. Gray. (1999). Data Mining. Journal of Management Information Systems 16(1): 11-17.
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control. Signals, and Systems 2(4): 303-314. https://doi.org/10.1007/BF02551274
- Freund, Y. and R. E. Schapire. (1996). Game theory, on-line prediction and boosting. Proceedings of the Annual ACM Conference on Computational Learning Theory.
- Freund, Y. and R. E. Schapire. (1999). Large margin classification using the perceptron algorithm. Machine Learning 37(3): 277-296. https://doi.org/10.1023/A:1007662407062
- Gray, P. and H. J. Watson. (1998). Professional Briefings...Present and Future Directions in Data Warehousing. Database for Advances in Information Systems 29(3): 83-90. https://doi.org/10.1145/313310.313345
- Gray, P. and H. J. Watson. (1998). Decision Support in the Data Warehouse. N.J.: Upper Saddle River.
- Han, J. and M. Kamber. (2001). Data Mining: Concepts and Techniques San Francisco. Morgan-Kaufmann Academic Press.
- Hand, D. J. (1998). Data Mining: Statistics and More?. The American Statistician 52(2): 112-118.
- Hornik, K., M. Stinchcombe, et al. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3(5): 551-560. https://doi.org/10.1016/0893-6080(90)90005-6
- Hunt, E., J. Martin, et al. (1966). Experiments in induction. New York: Academic Press.
- Iddings, R.K., and Apps, J.W. (1990). What Influences Farmers' Computer Use?. Journal of Extension 28(1)(http://www.joe.org/joe/1990spring/a4.html.2004/10/1).
- Jayas, D. S., J. Paliwal, et al. (2000). Multi-layer neural networks for image analysis of agricultural products. Journal of Agricultural and Engineering Research 77(2): 119-128. https://doi.org/10.1006/jaer.2000.0559
- Kass, G. (2001). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics 29(1980): 119-127.
- Kirchner, K., K. H. Tolle, et al. (2004a). Decision tree technique applied to pig farming datasets. Livestock Production Science 90(2-3): 191-200. https://doi.org/10.1016/j.livprodsci.2004.04.003
- Kirchner, K., K. H. Tolle, et al. (2004b). The analysis of simulated sow herd datasets using decision tree technique. Computers and Electronics in Agriculture 42(2): 111-127. https://doi.org/10.1016/S0168-1699(03)00119-4
- Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine 23(1): 89-109. https://doi.org/10.1016/S0933-3657(01)00077-X
- Kuhlmann, F., and Brodersen, C. (2001). Information technology and farm management: developments and perspectives. Computers and Electronics in Agriculture 30: 71-83. https://doi.org/10.1016/S0168-1699(00)00157-5
- Langley, P. and H. A. Simon. (1995). Applications of machine learning and rule induction. Communications of the ACM 38(11): 54-64. https://doi.org/10.1145/219717.219768
- Levenberg, K. (1994). A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quarterly Journal of Applied Mathematics 2(2):164-168.
- Levin, N. and Zahavi, J. (2001). Predictive Modeling Using Segmentation. Journal of Interactive marketing 15: 2-22. https://doi.org/10.1002/dir.1012
- Lim, T.S., Loh, W.Y., and Shin, Y.S. (2000). A comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Machine Learning 40: 203-228. https://doi.org/10.1023/A:1007608224229
- McQueen, R. J., S. R. Garner, et al. (1995). Applying machine learning to agricultural data. Comput. Electron. Agric. 12(4): 275-293. https://doi.org/10.1016/0168-1699(95)98601-9
- Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.
- Moutinho, L., Curry, B., Davies, F., and Rita, P. (1994). Neural Network in Marketing. New York: Routledge.
- Murthy, K. S. (1998). Automatic Construction of Decision Trees from Data: A Multi-disciplinary Survey. Data Mining and Knowledge Discovery 2: 345-389. https://doi.org/10.1023/A:1009744630224
- Nilsson, N. (1965). Learning machines. New York: McGraw-Hill.
- Peacock, P. R. (1998). Data mining in marketing: Part 1. Marketing Management 6(4): 9.
- Peacock, P. R. (1998). Data mining in marketing: Part 2. Marketing Management 7(1): 15.
- Pietersma, D., R. Lacroix, et al. (2003). Induction and evaluation of decision trees for lactation curve analysis. Computers and Electronics in Agriculture 38(1): 19-32. https://doi.org/10.1016/S0168-1699(02)00105-9
- Quinlan, J. R. (1993). C4.5: Program of Machine Learning. CA.: Morgan Kaufman Publishing.
- Rumelhart, D. E., B. Widrow, et al. (1994). Basic ideas in neural networks. Communications of the ACM 37(3): 87-92. https://doi.org/10.1145/175247.175256
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal Representation by Error Propagation. in Parallel Distributied Processing: Explorations in the Microstructure of Cognition. D.E. Rumelhart and J.A. McClelland(Eds.). Cambridge. MA: MIT Press.
- Schultz, A., R. Wieland, et al. (2000). Neural networks in agroecological modelling-Stylish application or helpful tool?. Computers and Electronics in Agriculture 29(1-2): 73-97. https://doi.org/10.1016/S0168-1699(00)00137-X
- Scott Mitchell, R., L. A. Smith, et al. (1996). An investigation into the use of machine learning for determining oestrus in cows. Computers and Electronics in Agriculture 15(3): 195-213. https://doi.org/10.1016/0168-1699(96)00016-6
- Sonquist, J., Baker, E., and Morgan, J. N. (1971). Searching for Structure, Survey Research Center, Ann Arbor: University of Michigan.