Brain Mechanisms of Cognitive, Emotional and Behavioral Aspects of Taste

  • Yamamoto, Takashi (Kio University Faculty of Health Sciences, Department of Health and Nutrition)
  • Published : 2009.09.30

Abstract

Taste is associated with hedonic evaluation as well as recognition of quality and intensity. Taste information is sent to the cortical gustatory area in a chemotopical manner to be processed for discrimination of taste quality. It is also conveyed to the reward system and feeding center via the prefrontal cortices. The amygdala, which receives taste inputs, also influences reward and feeding. In terms of neuroactive substances, palatability is closely related to benzodiazepine derivatives and $\beta$-endorphin, both of which facilitate consumption of food and fluid. The reward system contains the ventral tegmental area, nucleus accumbens and ventral pallidum and finally sends information to the lateral hypothalamic area, the feeding center. The dopaminergic system originating from the ventral tegmental area mediates the motivation to consume palatable food. The actual ingestive behavior is promoted by the orexigenic neuropeptides from the hypothalamus. Even palatable food can become aversive and avoided as a consequence of postingestional unpleasant experience such as malaise. The brain mechanism of these aspects of taste is elucidated.

Keywords

References

  1. Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20:1-25 https://doi.org/10.1016/0149-7634(95)00033-B
  2. Berridge KC, Pecina S. Benzodiazepines, appetite, and taste palatability. Neurosci. Biobehav Rev. 1995;19:121-31 https://doi.org/10.1016/0149-7634(94)00026-W
  3. Bures J, Berm$\acute{u}$dez-Rattoni F, Yamamoto T. Conditioned Taste Aversion: Memory of a Special Kind, pp.1-178, Oxford University Press, Oxford, 1998
  4. Furudono Y, Ando C, Yamamoto C, Kobashi M, Yamamoto T. Involvement of specific orexigenic neuropeptides in sweetenerinduced overconsumption in rats. Behav Brain Res. 2006;175:241-8 https://doi.org/10.1016/j.bbr.2006.08.031
  5. Garcia J, Kimeldorf DJ, Koelling RA. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science. 1955;122:157-8
  6. Higgs S, Cooper SJ. Hyperphagia induced by direct administration of midazolam into the parabrachial nucleus of the rat. Eur J Pharmacol. 1996;313:1-9 https://doi.org/10.1016/0014-2999(96)00446-3
  7. Inui T, Shimura T, Yamamoto T. The role of the ventral pallidum GABAergic system in conditioned taste aversion: effects of microinjections of a GABAA receptor antagonist on taste palatability of a conditioned stimulus. Brain Res. 2007;1164:117-24 https://doi.org/10.1016/j.brainres.2007.06.031
  8. Inui T, Yamamoto T, Shimura T. The GABAergic transmission in the rat ventral pallidum mediates a palatability shift in conditioned taste aversion. Eur J Neurosci. 2009;30:110-5 https://doi.org/10.1111/j.1460-9568.2009.06800.x
  9. Kobashi M, Furudono Y, Matsuo R, Yamamoto T. Central orexin facilitates gastric relaxation and contractility in rats. Neurosci Lett. 2003;332:171-4 https://doi.org/10.1016/S0304-3940(02)00958-8
  10. Kobashi M, Shimatani Y, Shirota K, Xuan SY, Mitoh Y, Matsuo R. Central neuropeptide Y induces proximal stomach relaxation via Y1 receptors in the dorsal vagal complex of the rat. Am. J. Physiol. Regul Integr Comp Physiol. 2006;290:R290-7 https://doi.org/10.1152/ajpregu.00423.2005
  11. Lindemann B. Receptors and transduction in taste. Nature. 2001;413:219-25 https://doi.org/10.1038/35093032
  12. Morris R, Frey S, Kasambira T, Petrides M. Ibotenic acid lesions of the basolateral, but not the central, amygdala interfere with conditioned taste aversion: evidence from a combined behavioral and anatomical tract-tracing investigation. Behav Neurosci. 1999;113:291-302 https://doi.org/10.1037/0735-7044.113.2.291
  13. Olds J, Milner PM, Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419-27 https://doi.org/10.1037/h0058775
  14. Sato H, Shimanuki Y, Saito M, Toyoda H, Nokubi T, Maeda Y, Yamamoto T, Kang Y. Differential columnar processing in local circuits of barrel and insular cortices. J Neurosci. 2008;28:3076-89 https://doi.org/10.1523/JNEUROSCI.0172-08.2008
  15. Schoenfeld MA, Neuer G, Tempelmann C, Sch$\ddot{ㅕ}$$\beta$ler K, Noesselt T, Hopf JM, Heinze HJ. Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience. 2004;127:347-53 https://doi.org/10.1016/j.neuroscience.2004.05.024
  16. Shimura T, Imaoka H, Yamamoto T. Neurochemical modulation of ingestive behavior in the ventral pallidum. Eur J Neurosci. 2006;23:1596-604 https://doi.org/10.1111/j.1460-9568.2006.04689.x
  17. Shimura T, Kamada Y, Yamamoto T. Ventral tegmental lesions reduce overconsumption of normally preferred taste fluid in rats. Behav Brain Res. 2001;134:123-30
  18. Shimura T, Tanaka H, Yamamoto T. Salient responsiveness of parabrachial neurons to the conditioned stimulus after the acquisition of taste aversion learning in rats. Neuroscience. 1997;81:239-47 https://doi.org/10.1016/S0306-4522(97)00188-7
  19. Shimura T, Watanabe U, Yanagawa Y, Yamamoto T. Altered taste function in mice deficient in the 65-kDa isoform of glutamate decarboxylase. Neurosci Lett. 2004;356:171-4 https://doi.org/10.1016/j.neulet.2003.11.041
  20. Stratford TR, Kelley AE. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci. 1999;19:11040-8
  21. Tokita K, Karadi Z, Shimura T, Yamamoto T. Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. J Neurophysiol. 2004;92:265-79
  22. Tokita K, Shimura T, Nakamura S, Inoue T, Yamamoto T. Involvement of forebrain in parabrachial neuronal activation induced by aversively conditioned taste stimuli in the rat. Brain Res. 2007;1141:188-96 https://doi.org/10.1016/j.brainres.2007.01.023
  23. Yamamoto T. Central mechanisms of taste: Cognition, emotion and taste-elicited behaviors. Jpn Dent Sci Rev. 2008;44:91-9 https://doi.org/10.1016/j.jdsr.2008.07.003
  24. Yamamoto T, Fujimoto Y. Brain mechanisms of taste aversion learning in the rat. Brain Res Bull. 1991;27:403-6 https://doi.org/10.1016/0361-9230(91)90133-5
  25. Yamamoto T, Yasoshima Y. Electrophysiological representation of taste memory. Neural Plasticity and Memory: From genes to brain imaging. F. Bermudez-Rattoni (ed.) pp.113-28, CRC Press, Boca Ration, 2007
  26. Yamamoto T, Sako N, Maeda S. Effects of taste stimulation on $\beta$-endorphin levels in rat cerebrospinal fluid and plasma. Physiol Behav. 2000;69:345-50 https://doi.org/10.1016/S0031-9384(99)00252-8
  27. Yamamoto T, Fujimoto Y, Shimura T, Sakai N. Conditioned taste aversion in rats with excitotoxic brain lesions. Neurosci Res. 1995;22:31-49 https://doi.org/10.1016/0168-0102(95)00875-T
  28. Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R. Taste responses of cortical neurons in freely ingesting rats. J Neurophysiol. 1989;61:1244-58 https://doi.org/10.1152/jn.1989.61.6.1244
  29. Yamamoto T, Yuyama N, Kato T, Kawamura Y. Gustatory responses of cortical neurons in rats. II. Information processing of taste quality. J Neurophysiol. 1985a;53:1356-69 https://doi.org/10.1152/jn.1985.53.6.1356
  30. Yamamoto T, Yuyama N, Kato T, Kawamura Y. Gustatory responses of cortical neurons in rats. III. Neural and behavioral measures compared. J Neurophysiol. 1985b;53:1370-86 https://doi.org/10.1152/jn.1985.53.6.1370
  31. Yamamoto T, Takemura M, Inui T, Torii K, Maeda N, Ohmoto M, Matsumoto I, Abe K. Functional organization of the rodent parabrachial nucleus. Ann NY Acad Sci. 2009;1170:378-82 https://doi.org/10.1111/j.1749-6632.2009.03883.x
  32. Yasoshima Y, Yamamoto T. Short-term and long-term excitability changes of the insular cortical neurons after the acquisition of taste aversion learning in behaving rats. Neuroscience. 1998;284:1-5
  33. Yasoshima Y, Scott TR, Yamamoto T. Involvement of the supramammillary nucleus in aversive conditioning. Behav Neurosci. 2005;119:1290-7 https://doi.org/10.1037/0735-7044.119.5.1290
  34. Yasoshima Y, Scott TR, Yamamoto T. Memory-dependent c-Fos expression in the nucleus accumbens and extended amygdala following the expression of a conditioned taste aversive in the rat. Neuroscience. 2006;141:35-45 https://doi.org/10.1016/j.neuroscience.2006.03.019
  35. Yasoshima Y, Scott TR, Yamamoto T. Differential activation of anterior and midline thalamic nuclei following retrieval of aversively motivated learning tasks. Neuroscience. 2007;146:922-30 https://doi.org/10.1016/j.neuroscience.2007.02.044
  36. Yasoshima Y, Shimura T, Yamamoto T. Single unit responses of the amygdala after conditioned taste avertion in conscious rats. NeuroReport. 1995;6:2424-8 https://doi.org/10.1097/00001756-199511270-00034