Molecular and Epidemiological Characterization of Enteroviruses Isolated in Chungnam, Korea from 2005 to 2006

  • Baek, Kyung-Ah (Chungcheongnam-Do Health and Environment Research Institute) ;
  • Park, Kwi-Sung (Chungcheongnam-Do Health and Environment Research Institute) ;
  • Jung, Eun-Hye (Chungcheongnam-Do Health and Environment Research Institute) ;
  • Chung, Eun-Hee (Department of Pediatrics, College of Medicine, Dankook University) ;
  • Park, Joon-Soo (Department of Pediatrics, College of Medicine, Soonchunhyang University) ;
  • Choi, Hwa-Jung (Korea Research Institute of Bioscience and Biotechnology) ;
  • Baek, Seung-Hwa (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Jee, Young-Mee (Division of Enteric and Hepatitis Viruses, Department of Virology, National Institute of Health, Korea Center for Disease Control and Prevention) ;
  • Cheon, Doo-Sung (Division of Enteric and Hepatitis Viruses, Department of Virology, National Institute of Health, Korea Center for Disease Control and Prevention) ;
  • Ahn, Gwang-Sook (Department of Biology, Daejeon University)
  • Published : 2009.09.30

Abstract

Enteroviruses were identified and characterized from patients with aseptic meningitis and other enterovirus-related diseases in Chungnam, Korea from 2005 to 2006. Enteroviruses were isolated from 79 of 519 cases (15.2%) in 2005, and 37 of 386 cases (9.6%) in 2006. Based on partial VP1 sequencing, a total of 116 enterovirus isolates were resolved into 13 types. Prevalent among the Chungnam isolates were echovirus 18 and coxsackievirus B5 in 2005, and echoviruses 5 and 25 in 2006. This is the first time echoviruses 5 and 18 have been identified in Korea since enterovirus surveillance began there in 1993. The temporal distribution of enterovirus epidemics in Chungnam showed a remarkable seasonal pattern, with cases occurring during most of the three months of the summer from June to August. The highest rate of enterovirus-positive cases occurred in patients less than 1 year of age. The ratio of male to female enterovirus-positive patients was approximately 1.8:1. Comparison of the VP1 amino acid sequences of the 15 coxsackievirus B5 isolates with reference strains revealed that all Chungnam isolates are substituted at positions 23 (V231), 19 (S19G), 75 (Y75F), and 95 (N95S). Upon comparing the nine ECV5 isolates with foreign strains, it was found that only the Chungnam isolates, with the exception of Kor06-ECV5-239cn, have P at position 153 and F at position 146. The three ECV9 isolates from 2006 show alterations at amino acids 36, 148, and 154 outside of the BC-loop and at position 84 in the BC-loop, whereas the seven isolates from 2005 and the other ECV9 strains in the database only show the alteration at position 84 (D, I, N, S). The five ECV25 isolates have an S residue at position 134, whereas most of the foreign strains have an N residue.

Keywords

References

  1. Bottner, J. L., S. Daneschnejad, W. Handrick, V. Schuster, U. G. Liebert, and W. Kiess. 2002. A season of aseptic meningitis in Germany: Epidemiologic, clinical and diagnostic aspects. Pediatr. Infect. Dis. J. 21: 1126-1132 https://doi.org/10.1097/00006454-200212000-00008
  2. Caggana, M., P. Chan, and A. Ramsingh. 1993. Identification of a single amino acid residue in the capsid protein VP1 of coxsackievirus B4 that determines the virulent phenotype. J. Virol. 67: 4797-4803
  3. Caro, V., S. Guillot, F. Delpeyroux, and R. Crainic. 2001. Molecular strategy for serotyping of human enteroviruses. J. Gen. Virol. 82: 79-91
  4. Centers for Disease Control and Prevention. 2006. Enterovirus surveillance -- United States, 1970-2005. Morb. Mortal. Wkly Rep. 55: 1-20
  5. Chomel, J. J., D. Antona, D. Thouvenot, and B. Lina. 2003. Three ECHOvirus serotypes responsible for outbreak of aseptic meningitis in Rh$\^{o}$ne-Alpes region, France. Eur. J. Clin. Microbiol. Infect. Dis. 22: 191-193
  6. Dunn, J. J., N. M. Chapman, S. Tracy, and J. R. Romero. Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: Localization to the 5' nontranslated region. J. Virol. 74: 4787-4794 https://doi.org/10.1128/JVI.74.10.4787-4794.2000
  7. Huttunen, P., J. Santti, T. Pulli, and T. Hyypi$\ddot{a}$. 1996. The major echovirus group is genetically coherent and related to coxsackie B viruses. J. Gen. Virol. 77: 715-725 https://doi.org/10.1099/0022-1317-77-4-715
  8. Jacques, J., H. Moret, D. Minette, N. Leveque, N. Jovenin, G. Deslee, F. Lebargy, J. Motte, and L. Andreoletti. 2008. Epidemiological, molecular, and clinical features of enterovirus respiratory infections in French children between 1999 and 2005. J. Clin. Microbiol. 46: 206-213 https://doi.org/10.1128/JCM.01414-07
  9. Jee, Y. M., D. S. Cheon, W. Y. Choi, J. B. Ahn, K. S. Kim, Y. S. Chung, et al. 2004. Updates on enterovirus surveillance in Korea. Infect. Chemother. 36: 294-303
  10. Knowlton, K. U., E. S. Jeon, N. Berkley, R. Wessely, and S. J. Huber. 1996. A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J. Virol. 70: 7811-7818
  11. Kunkel, U. and E. Schreier. 2000. Genetic variability within the VP1 coding region of echovirus type 30 isolates. Arch. Virol. 145: 1455-1464 https://doi.org/10.1007/s007050070102
  12. Lee, K. Y., D. Burgner, H. S. Lee, J. H. Hong, M. H. Lee, J. H. Kang, and B. C. Lee. 2005. The changing epidemiology of pediatric aseptic meningitis in Daejeon, Korea from 1987 to 2003. BMC Infect. Dis. 97: 2-5 https://doi.org/10.1186/1471-2334-5-97
  13. Lee, S. T., C. S. Ki, and N. Y. Lee. 2007. Molecular characterization of enteroviruses isolated from patients with aseptic meningitis in Korea, 2005. Arch. Virol. 152: 963-970 https://doi.org/10.1007/s00705-006-0901-1
  14. Martinez, H. M. 1983. An efficient method for finding repeats in molecular sequences. Nucleic Acids Res. 11: 4629-4634 https://doi.org/10.1093/nar/11.13.4629
  15. Mateu, M. G. 1995. Antibody recognition of picornaviruses and escape from neutralization: A structural view. Virus Res. 38: 1-24 https://doi.org/10.1016/0168-1702(95)00048-U
  16. Mayo, M. and C. R. Pringle. 1998. Virus taxonomy. 1997. J. Gen. Virol. 79: 649-657
  17. McPhee, F., R. Zell, B. Y. Reimann, P. H. Hofschneider, and R. Kandolf. 1994. Characterization of the N-terminal part of the neutralizing antigenic site I of coxsackievirus B4 by mutation analysis of antigen chimeras. Virus Res. 34: 139-151 https://doi.org/10.1016/0168-1702(94)90096-5
  18. Minor, P. D. 1990. Antigenic structure of picornaviruses. Curr. Top. Microbiol. Immunol. 161: 121-154
  19. Needleman, S. B. and C. D. Wunsch. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48: 443-453 https://doi.org/10.1016/0022-2836(70)90057-4
  20. Nix, W. A., M. S. Oberste, and M. A. Pallansch. 2006. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J. Clin. Microbiol. 44: 2698-2704 https://doi.org/10.1128/JCM.00542-06
  21. Norder, H., L. Bjerregaard, and L. O. Magnius. 2001. Homotypic echoviruses share aminoterminal VP1 sequence homology applicable for typing. J. Med. Virol. 63: 35-44 https://doi.org/10.1002/1096-9071(200101)63:1<35::AID-JMV1005>3.0.CO;2-Q
  22. Norder, H., L. Bjerregaard, L. Magnius, B. Lina, M. Aymard, and J. J. Chomel. 2003. Sequencing of 'untypable' enteroviruses reveals two new types, EV-77 and EV-78, within human enterovirus type B and substitutions in the BC loop of the VP1 protein for known types. J. Gen. Virol. 84: 827-836 https://doi.org/10.1099/vir.0.18647-0
  23. Oberste, M. S., K. Maher, and M. A. Pallansch. 1998. Molecular phylogeny of all human enterovirus serotypes based on comparison of sequences at the 5' end of the region encoding VP2. Virus Res. 58: 35-43 https://doi.org/10.1016/S0168-1702(98)00101-4
  24. Oberste, M. S., K. Maher, D. R. Kilpatrick, and M. A. Pallansch. 1999. Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 73: 1941-1948
  25. Oberste, M. S., K. Maher, M. R. Flemister, G. Marchetti, D. R. Kilpatrick, and M. A. Pallansch. 2000. Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J. Clin. Microbiol. 38: 1170-1174
  26. Oberste, M. S., W. A. Nix, K. Maher, and M. A. Pallansch. 2003. Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J. Clin. Virol. 26: 375-377 https://doi.org/10.1016/S1386-6532(03)00004-0
  27. Oberste, M. S., K. Maher, A. J. Williams, N. Dybdahl-Sissoko, B. A. Brown, M. S. Gookin, et al. 2006. Species-specific RTPCR amplification of human enteroviruses: A tool for rapid species identification of uncharacterized enteroviruses. J. Gen. Virol. 87: 119-128 https://doi.org/10.1099/vir.0.81179-0
  28. Oh, S. H., M. S. Lee, J. H. Kang, C. H. Kim, J. Y. Park, Y. M. Shon, W. J. Lee, C. S. Chun, and S. M. Shin. 1996. Report of nationwide epidemiology of aseptic meningitis outbreaks in 1993 in Korea. J. Korean Pediatr. Soc. 39: 42-52
  29. Page, R. D. 1996. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358
  30. Pallansch, M. A. and M. S. Oberste. 2003. Molecular detection and characterization of human enteroviruses, pp. 245-257. In A. Matsumori (ed.). Cardiomyopathies and Heart Failure: Biomolecular, Infectious and Immune Mechanisms. Kluwer Academic Publishers, Boston, U.S.A
  31. Pringle, C. R. 1999. Virus taxonomy at the XIth International Congress of Virology, Sydney, Australia, 1999. Arch. Virol. 144: 2065-2070 https://doi.org/10.1007/s007050050728
  32. Pulli, T., P. K. Oskimies, and T. Hyypia. 1995. Molecular comparison of coxsackie A virus serotypes. Virology 211: 30-38 https://doi.org/10.1006/viro.1995.1450
  33. Romero, J. R. 1999. Reverse-transcription polymerase chain reaction detection of the enteroviruses. Arch. Pathol. Lab. Med. 123: 1161-1169
  34. Rotbart, H. A. 1995. Meningitis and encephalitis, pp. 271-289. In H. A. Rotbart (ed.). Human Enterovirus Infections. ASM Press, Washington, D. C.
  35. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  36. Sawyer, M. H. 1999. Enterovirus infections: Diagnosis and treatment. Pediatr. Infect. Dis. J. 18: 1033-1039 https://doi.org/10.1097/00006454-199912000-00002
  37. Stirk, H. J. and J. M. Thornton. 1994. The BC loop in poliovirus coat protein VP1: An ideal acceptor site for major insertions. Protein Eng. 7: 47-56 https://doi.org/10.1093/protein/7.1.47
  38. Thoelen, I., P. Lemey, I. van der Donck, K. Beuselinck, A. M. Lindberg, and M. van Ranst. 2003. Molecular typing and epidemiology of enteroviruses identified from an outbreak of aseptic meningitis in Belgium during the summer of 2000. J. Med. Virol. 70: 420-429 https://doi.org/10.1002/jmv.10412
  39. Thoelen, I., E. Moës, P. Lemey, S. Mostmans, E. Wollants, A. M. Lindberg, A. M. Vandamme, and M. van Ranst. 2004. Analysis of the serotype and genotype correlation of VP1 and the 5' noncoding region in an epidemiological survey of the human enterovirus B species. J. Clin. Microbiol. 42: 963-971 https://doi.org/10.1128/JCM.42.3.963-971.2004
  40. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  41. Zoll, G. J., W. J. Melchers, H. Kopecka, G. Jambroes, H. J. van der Poel, and J. M. Galama. 1992. General primer-mediated polymerase chain reaction for detection of enteroviruses: Application for diagnostic routine and persistent infections. J. Clin. Microbiol. 30: 160-165