A Novel Tannase from the Xerophilic Fungus Aspergillus niger GH1

  • Marco, Mata-Gomez (Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Blvd. Venustiano Carranza and J. Cardenas s/n, ZIP) ;
  • Rodriguez, Luis V. (School of Biochemical Engineering, Universidad Autonoma de Tamaulipas, Blvd. Enrique Cardenas Gonzalez) ;
  • Ramos, Erika L. (Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Blvd. Venustiano Carranza and J. Cardenas s/n, ZIP) ;
  • Renovato, Jacqueline (Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Blvd. Venustiano Carranza and J. Cardenas s/n, ZIP) ;
  • Cruz-Hernandez, Mario A. (Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Blvd. Venustiano Carranza and J. Cardenas s/n, ZIP) ;
  • Rodriguez, Raul (Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Blvd. Venustiano Carranza and J. Cardenas s/n, ZIP) ;
  • Contreras, Juan (Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Blvd. Venustiano Carranza and J. Cardenas s/n, ZIP) ;
  • Aguilar, Cristobal N. (Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Blvd. Venustiano Carranza and J. Cardenas s/n, ZIP)
  • Published : 2009.09.30

Abstract

Aspergillus niger GH1 previously isolated and identified by our group as a wild tannase producer was grown under solid-state (SSC) and submerged culture (SmC) conditions to select the enzyme production system. For tannase purification, extracellular tannase was produced under SSC using polyurethane foam as the inert support. Tannase was purified to apparent homogeneity by ultrafiltration, anion-exchange chromatography, and gel filtration that led to a purified enzyme with a specific activity of 238.14 IU/mg protein with a final yield of 0.3% and a purification fold of 46. Three bands were found on the SDS-PAG with molecular masses of 50, 75, and 100 kDa. PI of 3.5 and 7.1% N-glycosylation were noted. Temperature and pH optima were 600e and 6.0 [methyl 3,4,5-trihydroxybenzoate (MTB) as substrate], respectively. Tannase was found with a $K_M$ value of $0.41{\times}10^{-4}M$ and the value of $V_{max}$ was $11.03{\mu}$moL/min at $60^{\circ}C$ for MTB. Effects of several metal salts, solvents, surfactants, and typical enzyme inhibitors on tannase activity were evaluated to establish the novelty of the enzyme. Finally, the tannase from A. niger GH1 was significantly inhibited by PMSF (phenylmethylsulfonyl fluoride), and therefore, it is possible to consider the presence of a serine or cysteine residue in the catalytic site.

Keywords

References

  1. Adachi, O., M. Watanabe, and H. Yamada. 1971. Physicochemical properties of the tannase from Aspergillus flavus. Agric. Biol. Chem. 32: 1079-1085
  2. Aguilar, C. N. and G. Guti$\acute{e}$rrez-S$\acute{a}$nchez. 2001. Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Technol. Int. 7: 373-382
  3. Aguilar, C. N., A. Aguilera-Carbo, A. Robledo, J. Ventura, R. Belmares, D. Martinez, R. Rodríguez-Herrera, and J. Contreras. 2008. Production of antioxidant-nutraceuticals by solid state cultures of pomegranate residues (Punica granatum) and creosote bush (Larrea tridentata). Food Technol. Biotechnol. 46: 216- 220
  4. Aguilar, C. N., C. Augur, G. Viniegra-Gonz$\acute{a}$lez, and E. Favela. 1999. A comparision of methods to determine tannin acyl hydrolase activity. Braz. Arch. of Bio. Tech. 42: 355-361
  5. Aguilar, C. N., R. Rodriguez, G. Gutierrez-Sanchez, C. Augur, E. Favela-Torres, L. A. Prado-Barragan, A. Ramirez-Coronel, and J. C. Contreras-Esquivel. 2007. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biotechnol. 76: 47-59 https://doi.org/10.1007/s00253-007-1000-2
  6. Banerjee, D., S. Mahapatra, and B. R. Pati. 2007. Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Res. J. Microbiol. 2: 462-468 https://doi.org/10.3923/jm.2007.462.468
  7. Barthomeuf, C., F. Regerat, and H. Pourrat. 1994. Production, purification and characterization of tannase from Aspergillus niger LCF8. J. Ferment. Technol. 77: 137-142
  8. Battestin, V. and G. A. Macedo. 2007. Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electr. J. Biotechnol. 10: 191-199
  9. Battestin, V. and G. A. Macedo. 2007. Partial purification and biochemical characterization of tannase from a newly isolated strain of Paecilomyces variotii. Food Biotechnol. 21: 207-216 https://doi.org/10.1080/08905430701533588
  10. Battestin, V. and G. A. Macedo. 2007. Tannase production by Paecilomyces variotii. Bioresour. Technol. 98: 1832-1837 https://doi.org/10.1016/j.biortech.2006.06.031
  11. Battestin, V., G. A. Macedo, and V. A. P. De Freitas. 2008. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chem. 108: 228-233 https://doi.org/10.1016/j.foodchem.2007.10.068
  12. Belmares, R., J. C. Contreras-Esquivel, R. Rodríguez-Herrera, A. Ramírez Coronel, and C. N. Aguilar. 2004. Microbial production of tannase: An enzyme with potential use in food industry. Lebensm. Wiss. Technol. 37: 857-864 https://doi.org/10.1016/j.lwt.2004.04.002
  13. Bhardwaj, R., B. Singh, and T. K. Bhat. 2003. Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425. J. Basic Microbiol. 43: 449-461 https://doi.org/10.1002/jobm.200310273
  14. Bhat, T. K., B. Singh, and O. P. Sharma. 1998. Microbial degradation of tannins. A current perspective. Biodegradation 9: 343-357 https://doi.org/10.1023/A:1008397506963
  15. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  16. Cruz-Hernandez, M. A., J. C. Contreras-Esquivel, F. Lara, R. Rodr$\acute{i}$guez-Herrera, and C. N. Aguilar. 2005. Isolation and evaluation of tannin-degrading strains from the Mexican desert. Z. Naturforsch. 60c: 844-848
  17. Cruz-Hern$\acute{a}$ndez, M., C. Augur, R. Rodríguez, J. Contreras- Esquivel, and C. N. Aguilar. 2006. Evaluation of culture conditions for tannase production by Aspergillus niger GH1. Food Technol. Biotechnol. 44: 541-544
  18. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  19. Farias, G. M., C. Gorbea, J. R. Elkins, and G. J. Griffin. 1994. Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol. Mol. Plant Pathol. 44: 51-63 https://doi.org/10.1016/S0885-5765(05)80094-3
  20. Gupta, P., S. Bradoo, and R. K. Saxena. 1997. Rapid purification of extracellular tannase using polyethylene glycol-tannic acid complex. Lett. Appl. Microbiol. 4: 253-255 https://doi.org/10.1046/j.1472-765X.1997.00054.x
  21. Hota, S. K., J. R. Dutta, and R. Banerjee. 2007. Immobilization of tannase from Rhizopus oryzae and its efficiency to produce gallic acid from tannin rich agro-residues. Indian J. Biotechnol. 6: 200-204
  22. Ibuchi, S., Y. Minoda, and K. Yamada. 1972. Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase. Agric. Biol. Chem. 32: 803-809
  23. Jun, C. S., M. J. Yoo, W. Y. Lee, K. C. Kwak, M. S. Bae, W. T. Hwang, D. H. Son, and K. Y. Chai. 2007. Ester derivatives from tannase-treated prunioside A and their anti-inflammatory activities. Bull. Korean Chem. Soc. 28: 73-76 https://doi.org/10.5012/bkcs.2007.28.1.073
  24. Kar, B., R. Banerjee, and B. C. Bhattacharyya. 2003. Effect of additives on the behavioural properties of tannin acyl hydrolase. Process Biochem. 38: 1285-1293 https://doi.org/10.1016/S0032-9592(02)00329-1
  25. Kasieczka-Burnecka, M., K. Kuc, H. Kalinowska, M. Knap, and M. Turkiewicz. 2007. Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl. Microbiol. Biotechnol. 77: 77-89 https://doi.org/10.1007/s00253-007-1124-4
  26. Kumar, R., J. Sharma, and R. Singh. 2006. Production of tannase from Aspergillus ruber under solid state fermentation using jamun (Syzygium cumini) leaves. Microbiol. Res. 162: 384-390 https://doi.org/10.1016/j.micres.2006.06.012
  27. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680-685 https://doi.org/10.1038/227680a0
  28. Lekha, P. K. and B. K. Lonsane. 1994. Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Proc. Biochem. 29: 497-503 https://doi.org/10.1016/0032-9592(94)85019-4
  29. Lekha, P. K. and B. K. Lonsane. 1997. Production and application of tannin acyl hydrolase: State of the art. Adv. Appl. Microbiol. 44: 215-260 https://doi.org/10.1016/S0065-2164(08)70463-5
  30. Lekha, P. K., M. Ramakrishna, and B. K. Lonsane. 1993. Strategies for isolation of potent culture capable of producing tannin acyl hydrolase in higher titres. Chem. Mikrobiol. Technol. Lebensm. 15: 5-10
  31. Lokeswari, N. and K. Jaya-Raju. 2007. Optimization of gallic acid production from terminalia chebula by Aspergillus niger. Elec. J. Chem. 4: 287-293 https://doi.org/10.1155/2007/649306
  32. Lokeswari, N., K. Jaya-Raju, and M. Narasimha-Rao. 2007. Production of gallic acid from tannin using three different fungal strains by submerged fermentation. J. Pure Appl. Microbiol. 1: 21-28
  33. Lu, M. J. and C. Chen. 2007. Enzymatic tannase treatment of green tea increases in vitro inhibitory activity against Nnitrosation of dimethylamine. Proc. Biochem. 42: 1285-1290 https://doi.org/10.1016/j.procbio.2007.06.003
  34. Lu, M. J. and C. Chen. 2008. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res. Int. 41: 130-137 https://doi.org/10.1016/j.foodres.2007.10.012
  35. Mahapatra, K., R. K. Nanda, S. S. Bag, R. Banerjee, A. Pandey, and G. Szakacs. 2005. Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem. 40: 3251-3254 https://doi.org/10.1016/j.procbio.2005.03.034
  36. Mahendran, B., N. Raman, and D. Kim. 2006. Purification and characterization of tannase from Paecilomyces variotii: Hydrolysis of tannic acid using immobilized tannase. Appl. Microbiol. Biotechnol. 70: 444-450 https://doi.org/10.1007/s00253-005-0082-y
  37. Mukherjee, G. 2007. Production and properties of fungal tannase: An important industrial biocatalyst. Chim. Ogg. 25: 65-69
  38. Mukherjee, G. and R. Banerjee. 2005. Effects of temperature, pH and additives on the activity of tannase produced by a coculture of Rhizopus oryzae and Aspergillus foetidus. World J. Microbiol. Biotechnol. 22: 207-211 https://doi.org/10.1007/s11274-005-9022-3
  39. Mukherjee, G. and R. Banerjee. 2007. Effect of fermentation conditions on tannase production by Aspergillus foetidus from myrobalan. Asian J. Microbiol. Biotechnol. Environ. Sci. 9: 171-174
  40. Naidu, R. B., N. Saisubramanian, D. Selvakumar, S. Janardhanan, and R. Puvanakrishnan. 2008. Partial purification of tannase from Aspergillus foetidus by aqueous two phase extraction and its characterization. Curr. Trends Biotechnol. Pharm. 2: 201- 207
  41. Raab, T., R. Bel-Rhlid, G. Williamson, C. E. Hansen, and D. Chaillot. 2007. Enzymatic galloylation of catechins in room temperature ionic liquids. J. Mol. Catal. B 44: 60-65 https://doi.org/10.1016/j.molcatb.2006.09.003
  42. Rajkumar, G. S. and S. C. Nandy. 1983. Isolation, purification and some properties of Penicillium chrysogenum tannase. Appl. Environ. Microbiol. 46: 525-527
  43. Ramirez-Coronel, M. A., G. Viniegra-Gonzalez, A. Darvill, and C. Augur. 2003. A novel tannase from Aspergillus niger with $\beta$- glucosidase activity. Microbiology 149: 2941-2946 https://doi.org/10.1099/mic.0.26346-0
  44. Sabu, A., G. S. Kiran, and A. Pandey. 2005. Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620. Food Technol. Biotechnol. 43: 133-138
  45. Sharma, S., L. Agarwal, and R. K. Saxena. 2008. Purification, immobilization and characterization of tannase from Penicillium variable. Biores. Technol. 99: 2544-2551 https://doi.org/10.1016/j.biortech.2007.04.035
  46. Sharma, S., T. K. Bhat, and R. K. Dawra. 1999. Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World J. Microbiol. Biotechnol. 15: 673-677 https://doi.org/10.1023/A:1008939816281
  47. Srivastava, A. and R. Kar. 2008. Characterization of extracellular tannin acyl hydrolase and gallic acid produced on pomegranate rind (Punica granatum) under submerged fermentation by an Aspergillus niger isolate. J. Pure Appl. Microbiol. 2: 147-154
  48. Trevi$\tilde{n}$o, L., J. C. Contreras-Esquivel, R. Rodr$\acute{i}$guez-Herrera, and C. N. Aguilar. 2007. Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture. J. Zhejiang Univ. Sci. B 8: 771-776 https://doi.org/10.1631/jzus.2007.B0771
  49. Trevi$\tilde{n}$o-Cueto, B., M. Luis, J. C. Contreras-Esquivel, R. Rodr$\acute{i}$guez, A. Aguilera, and C. N. Aguilar. 2007. Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentata Cov). Biores. Technol. 98: 721-724 https://doi.org/10.1016/j.biortech.2006.02.015
  50. Urbano, G., M. L$\acute{o}$pez-Jurado, J. M. Porres, S. Frejnagel, E. G$\acute{o}$mez-Villalva, J. Fr$\acute{i}$as, C. Vidal-Valverde, and P. Aranda. 2007. Effect of treatment with $\alpha$-galactosidase, tannase or a cell-wall-degrading enzyme complex on the nutritive utilization of protein and carbohydrates from pea (Pisum sativum L.) flour. J. Sci. Food Agric. 87: 1356-1363 https://doi.org/10.1002/jsfa.2859
  51. Ventura, J., R. Belmares, A. Aguilera-Carbo, G. Gutierrez- Sanchez, R. Rodriguez-Herrera, and C. N. Aguilar. 2008. Fungal biodegradation of tannins from creosote bush (Larrea tridentata Cov.) and tar bush (Fluorensia cernua) for gallic and ellagic acids production. Food Technol. Biotechnol. 46: 211-215
  52. Yu, X. W., Y. Q. Li, S. M. Zhou, and Y. Y. Zheng. 2007. Synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent. World J. Microbiol. Biotechnol. 23: 1091-1098 https://doi.org/10.1007/s11274-006-9338-7
  53. Yu, X. W. and Y. Q. Li. 2008. Expression of Aspergillus oryzae tannase in Pichia pastoris and its application in the synthesis of propyl gallate in organic solvent. Food Technol. Biotechnol. 46: 80-85
  54. Zhong, X., L. Peng, S. Zheng, Z. Sun, Y. Ren, M. Dong, and A. Xu. 2004. Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr. Purif. 36: 165-169 https://doi.org/10.1016/j.pep.2004.04.016