Application of a Fed-Batch Bioprocess for the Heterologous Production of hSCOMT in Escherichia coli

  • Passarinha, L.A. (CICS-Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior) ;
  • Bonifacio, M.J. (Departamento de Investigacao e Desenvolvimento) ;
  • Queiroz, J.A. (CICS-Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
  • Published : 2009.09.30

Abstract

In this paper, a fed-batch cultivation process in recombinant Escherichia coli BL21(DE3) bacteria, for the production of human soluble catechol-O-methyltransferase (hSCOMT), is presented. For the first time, a straightforward model is applied in a recombinant hSCOMT expression system and distinguishes an initial cell growth phase from a protein production phase upon induction. Specifically, the kinetic model predicts biomass, substrate, and product concentrations in the culture over time and was identified from a series of fed-batch experiments designed by testing several feed profiles. The main advantage of this model is that its parameters can be identified more reliably from distinct fed-batch strategies, such as glycerol pulses and exponential followed by constant substrate additions. Interestingly, with the limited amount of data available, the proposed model accomplishes satisfactorily the experimental results obtained for the three state variables, and no exhaustive process knowledge is required. The comparison of the measurement data obtained in a validation experiment with the model predictions showed the great extrapolation capability of the model presented, which could provide new complementary information for the COMT production system.

Keywords

References

  1. Andersson, L., S. J. Yang, P. Neabauer, and S. O. Enfors. 1996. Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli. J. Biotechnol. 46: 255-263 https://doi.org/10.1016/0168-1656(96)00004-1
  2. Balbas, P. and F. Bolivar. 1990. Design and construction of expression plasmid vectors in Escherichia coli. Meth. Enzymol. 185: 14-37 https://doi.org/10.1016/0076-6879(90)85005-9
  3. Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421 https://doi.org/10.1016/S0958-1669(99)00003-8
  4. Berovic, M. and A. W. Nienow. 2005. Biochemical Engineering Principles. Doctoral/Post-Doctoral level course. Kemijsko Inzenirstvo
  5. Bondioli, P. and L. D. Bella. 2005. An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Eur. J. Lipid Sci. Technol. 107: 153-157 https://doi.org/10.1002/ejlt.200401054
  6. Bonifacio, M. J., M. A. Vieira-Coelho, and P. Soares-da-Silva. 2001. Expression and characterization of rat soluble catechol-Omethyltransferase fusion protein. Prot. Expr. Purif. 23: 106-112 https://doi.org/10.1006/prep.2001.1477
  7. Chen, R., W. M. G. J. Yap, P. W. Postma, and J. E. Bailey. 1997. Comparative studies of Escherichia coli strains using different glucose-uptake systems: Metabolism and energetics. Biotechnol. Bioeng. 56: 583-590 https://doi.org/10.1002/(SICI)1097-0290(19971205)56:5<583::AID-BIT12>3.0.CO;2-D
  8. De Mar, L., C. Cimander, A. Elfwing, and P. Hagander. 2007. Feeding strategies for E. coli fermentations demanding an enriched environment. Bioprocess Biosyst. Eng. 30: 13-25 https://doi.org/10.1007/s00449-006-0090-z
  9. Durany, O., C. De Mas, and J. L$\acute{o}$pez-Sant$\acute{i}$n. 2005. Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochem. 40: 707-716 https://doi.org/10.1016/j.procbio.2004.01.058
  10. Faulkner, E., M. Barrett, S. Okor, P. Kieran, E. Casey, F. Paradisi, P. Engel, and B. Glennon. 2006. Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli. Biotechnol. Prog. 22: 889-897 https://doi.org/10.1021/bp050327+
  11. Garc$\acute{i}$a-Junceda, E., G. Shen, T. Sugai, and C. H. Wong. 1995. A new strategy for the cloning, overexpression and one step purification of three DHAP-dependent aldolases: Rhamnulose-1- phosphate aldolase, fuculose-1-phosphate aldolase and tagatose- 1,6-diphosphate aldolase. Bioorg. Med. Chem. 3: 945-953 https://doi.org/10.1016/0968-0896(95)00077-T
  12. Harcum, S. W., D. M. Ramirez, and W. E. Bentley. 1992. Optimal nutrient feed policies for heterologous protein production. Appl. Biochem. Biotechnol. 34: 161-173 https://doi.org/10.1007/BF02920543
  13. Jensen, E. B. and S. Carlsen. 1990. Production of recombinant human growth hormone in Escherichia coli: Expression of different precursors and physiological effects of glucose, acetate and salts. Biotechnol. Bioeng. 36: 1-11 https://doi.org/10.1002/bit.260360102
  14. Jenzsch, M., R. Simutis, and A. Lübbert. 2006. Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. J. Biotechnol. 122: 483-493 https://doi.org/10.1016/j.jbiotec.2005.09.013
  15. Koh, B. T., U. Nakashimada, M. Pfeiffer, and M. G. S. Yap. 1992. Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains. Biotechnol. Lett. 14: 1115- 1118 https://doi.org/10.1007/BF01027012
  16. Kosinski, M. J., U. Rinas, and J. E. Bailey. 1992. Proteolytic response to the expression of an abnormal beta-galactosidase in Escherichia coli. Appl. Microbiol. Biotechnol. 37: 335-341 https://doi.org/10.1007/BF00210989
  17. Lee, S. Y. 1996. High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98-105 https://doi.org/10.1016/0167-7799(96)80930-9
  18. Levisauskas, D., V. Galvanauskas, S. Henrich, K. Wilhelm, N. Volk, and A. L$\ddot{u}$bbert. 2003. Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli. Bioproc. Biosyst. Eng. 25: 255-262
  19. Lin, H. Y., B. Mathiszik, B. Xu, S. O. Enfors, and P. Neubauer. 2001. Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli. Biotechnol. Bioeng. 73: 348-357
  20. Luo, Q., Y. L. Shen, D. Z. Wei, and W. Cao. 2006. Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 71: 184-191 https://doi.org/10.1007/s00253-005-0131-6
  21. March, J. C., M. A. Eiteman, and E. Altman. 2002. Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl. Environ. Microbiol. 68: 5620-5624 https://doi.org/10.1128/AEM.68.11.5620-5624.2002
  22. Nikerel, I. E., E. T. Oner, B. Kirdar, and R. Yildirim. 2006. Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology. Biochem. Eng. J. 32: 1-6 https://doi.org/10.1016/j.bej.2006.08.009
  23. Panda, A. K., R. H. Khan, K. B. C. Appa Rao, and S. M. Totey. 1999. Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J. Biotechnol. 75: 161-172 https://doi.org/10.1016/S0168-1656(99)00157-1
  24. Passarinha, L. A., M. J. Bonif$\acute{a}$cio, and J. A. Queiroz. 2006. The effect of temperature on the analysis of metanephrine for catechol- O-methyltransferase activity assay by HPLC with electrochemical detection. Biomed. Chromatogr. 20: 937-944 https://doi.org/10.1002/bmc.623
  25. Passarinha, L. A., M. J. Bonif$\acute{a}$cio, P. Soares-da-Silva, and J. A. Queiroz. 2008. A new approach on the purification of recombinant human soluble catechol-O-methyltransferase from an Escherichia coli extract using hydrophobic interaction chromatography. J. Chromatogr. A 1177: 287-296 https://doi.org/10.1016/j.chroma.2007.06.002
  26. Pflug, S., S. M. Richter, and V. B. Urlacher. 2007. Development of a fed-batch process for the production of the cytochrome P450 monooxygenase CYP102A1 from Bacillus megaterium in Escherichia coli. J. Biotechnol. 129: 481-488 https://doi.org/10.1016/j.jbiotec.2007.01.013
  27. Phue, J. N. and J. Shiloach. 2004. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J. Biotechnol. 109: 21-30 https://doi.org/10.1016/j.jbiotec.2003.10.038
  28. Ponce, E. 1999. Effect of growth rate reduction and genetic modifications on acetate accumulation and biomass yields in Escherichia coli. J. Biosci. Bioeng. 87: 775-780 https://doi.org/10.1016/S1389-1723(99)80152-2
  29. Ramirez, D. M. and W. E. Bentley. 1993. Enhancement of recombinant protein synthesis and stability via coordinated aminoacid addition. Biotechnol. Bioeng. 41: 557-565 https://doi.org/10.1002/bit.260410508
  30. Strandberg, L. and S. O. Enfors. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microbiol. 57: 1669-1674
  31. Suarez, D. C., C. W. Liria, and B. V. Kilikian. 1998. Effect of yeast extract on Escherichia coli growth and acetic acid production. World J. Microbiol. Biotechnol. 14: 331-335 https://doi.org/10.1023/A:1008800908696
  32. Svensson, M., I. Svensson, and S. O. Enfors. 2005. Osmotic stability of the cell membrane of Escherichia coli from a temperature-limited fed-batch process. Appl. Microbiol. Biotechnol. 67: 345-350 https://doi.org/10.1007/s00253-004-1832-y
  33. Teixeira, A., A. E. Cunha, J. J. Clemente, J. L. Moreira, H. J. Cruz, P. M. Alves, M. J. Carrondo, and R. Oliveira. 2005. Modelling and optimization of recombinant BHK-21 cultivation process using hybrid grey-box systems. J. Biotechnol. 118: 290-303 https://doi.org/10.1016/j.jbiotec.2005.04.024
  34. Tilgmann, C., K. Melen, K. Lundstrom, A. Jalanko, I. Julkunen, N. Kalkkinen, and I. Ulmanen. 1992. Expression of recombinant soluble and membrane-bound catechol-O-methyltransferase in eukaryotic cells and identification of the respective enzymes in rat brain. Eur. J. Biochem. 207: 813-821 https://doi.org/10.1111/j.1432-1033.1992.tb17112.x
  35. Tomson, K., T. Paalme, P. S. Laakso, and R. Vilu. 1995. Automatic laboratory-scale fed-batch procedure for production of recombinant proteins using inducible expression systems of Escherichia coli. Biotechnol. Tech. 9: 793-798 https://doi.org/10.1007/BF00159403
  36. Tsai, L. B., M. Mann, F. Morris, C. Rotgers, and D. Fenton. 1987. The effect of organic nitrogen and glucose on the production of recombinant human insulin-like growth factor in high cell density Escherichia coli fermentations. J. Ind. Biotechnol. 2: 181-187 https://doi.org/10.1007/BF01569426
  37. Ulmanen, I., J. Per$\ddot{a}$nen, J. Tenhunen, C. Tilgmann, T. Karhunen, P. Panula, L. Bernasconi, J. P. Aubry, and K. Lundstr$\ddot{o}$m. 1997. Expression and intracellular localization of catechol-O-methyltransferase in transfected mammalian cells. Eur. J. Biochem. 243: 452-459 https://doi.org/10.1111/j.1432-1033.1997.0452a.x
  38. Wang, Z. W., W. B. Huang, and Y. P. Chao. 2005. Efficient production of recombinant proteins in Escherichia coli using an improved L-arabinose-inducible T7 expression system. Process Chem. 40: 3137-3142 https://doi.org/10.1016/j.procbio.2005.03.013
  39. Wong, H. H., Y. C. Kim, S. Y. Lee, and H. N. Chang. 1998. Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol. Bioeng. 60: 271-276 https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<271::AID-BIT1>3.0.CO;2-E
  40. Xu, B., M. Jahic, and S. O. Enfors. 1999. Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol. Prog. 15: 81-90 https://doi.org/10.1021/bp9801087
  41. Yee, L. and H. W. Blanch. 1993. Defined media optimisation for growth of recombinant Escherichia coli X90. Biotechnol. Bioeng. 41: 221-230 https://doi.org/10.1002/bit.260410208