Seed-Conjugated Polymer Bead for ${\beta}2$-Microglobulin Removal at Neutral pH

  • Kim, Mi-Ra (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kang, Sung-Soo (School of Chemical and Biological Engineering, Seoul National University) ;
  • Myung, Eun-Kyung (School of Chemical and Biological Engineering, Seoul National University) ;
  • Ahn, Min-Koo (School of Chemical and Biological Engineering, Seoul National University) ;
  • Choi, Jeong-Hyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Paik, Seung-R. (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Yoon-Sik (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2009.09.30

Abstract

${\beta}2$-Microglobulin (${\beta}2m$) is known to be a major factor for dialysis-related amyloidosis. We have studied ${\beta}2m$ removal through an aggregation process, which was initiated by a ligand that could catch the ${\beta}2m$ monomer and promote its aggregation into fibril. As a ligand, we have prepared ${\beta}2m$ fibril fragments and used them as a seed. The seed was coupled to PEGylated-PS beads to remove the monomeric ${\beta}2m$ from solution. The ${\beta}2m$ seed-conjugated resin effectively adsorbed the ${\beta}2m$ monomers with a capacity of 3.6 mg/ml via promoting their aggregation into fibrils on the resin at pH 7.4.

Keywords

References

  1. Abe, T., K. Uchita, H. Orita, M. Kamimura, M. Oda, H. Hasegawa, et al. 2003. Effect of $\beta$2-microglobulin adsorption column on dialysis-related amyloidosis. Kidney Int. 64: 1522- 1528 https://doi.org/10.1046/j.1523-1755.2003.00235.x
  2. Ameer, G. A., E. A. Grovender, H. Ploegh, D. Ting, W. F. Owen, M. Rupnick, and R. Langer. 2001. A novel immunoadsorption device for removing $\beta$2-microglobulin from whole blood. Kidney Int. 59: 1544-1550 https://doi.org/10.1046/j.1523-1755.2001.0590041544.x
  3. Bethea, M. and D. T. Forman. 1990. Beta 2-microglobulin: Its significance and clinical usefulness. Ann. Clin. Lab. Sci. 20: 163-168
  4. Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, and D. C. Wiley. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506- 512 https://doi.org/10.1038/329506a0
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Bui, H. H., A. J. Schiewe, H. Grafenstein, and I. S. Haworth. 2006. Structural prediction of peptides binding to MHC class I molecules. Proteins 63: 43-52 https://doi.org/10.1002/prot.20870
  7. Chan, W. C. and P. W. White. 2000. Fmoc solid phase peptide synthesis: A practical approach. pp. 41-76. Oxford University Press, New York
  8. Chatani, E., H. Naiki, and Y. Goto. 2006. Seeding-dependent propagation and maturation of $\beta$2-microglobulin amyloid fibrils under high pressure. J. Mol. Biol. 359: 1086-1096 https://doi.org/10.1016/j.jmb.2006.04.023
  9. Chiba, T., Y. Hagihara, T. Higurashi, K. Hasegawa, H. Naiki, and Y. Goto. 2003. Amyloid fibril formation in the context of full-length protein: Effects of proline mutations on the amyloid fibril formation of $\beta$2-microglobulin. J. Biol. Chem. 278: 47016- 47024 https://doi.org/10.1074/jbc.M304473200
  10. Davankov, V., L. Pavlovaa, M. Tsyurupa, J. Bradyb, M. Balsamo, and E. Yousha. 2000. Polymeric adsorbent for removing toxic proteins from blood of patients with kidney failure. J. Chromatogr. B Biomed. Sci. Appl. 739: 73-80 https://doi.org/10.1016/S0378-4347(99)00554-X
  11. Deppermann, D., K. Andrassy, H. Seelig, F. Ritz, and D. Post. 1980. Evidence for dependence of beta-thromboglobulin levels on renal function (The Society of Nephrology, German speaking 1979). Kidney Int. 17: 403-404
  12. Drueke, T. B. 2000. $\beta$2-Microglobulin and amyloidosis. Nephrol. Dial. Transplant. 15: 17-24
  13. Furuyoshi, S., M. Nakatani, J. Taman, H. Kutsuki, S. Takata, and N. Tani. 1998. New adsorption column (Lixelle) to eliminate beta2-microglobulin for direct hemoperfusion. Ther. Apher. Dial. 2: 13-17 https://doi.org/10.1111/j.1744-9987.1998.tb00067.x
  14. Franco, A., A. Caballero, J. Chisvert, J. Luflo, R. Perez,and M. Martinez. 1988. Beta2-microglobulin ($\beta$2m) levels in hemodialysis (HD) patients. Its variation during RD with different membranes. Kidney Int. 34: 288-302 https://doi.org/10.1038/ki.1988.178
  15. Gejyo, F., T. Yamada, S. Odani, Y. Nakagawa, M. Arakawa, T. Kunitomo, et al. 1985. A new form of amyloid protein associated with chronic hemodialysis was identified as $\beta$2- microglobulin. Biochem. Biophys. Res Commun. 129: 701-706 https://doi.org/10.1016/0006-291X(85)91948-5
  16. Grovender, E. A., B. Kellogg, J. Singh, D. Blom, H. Ploegh, K. D. Wittrup, R. Langer, and G. A. Ameer. 2004. Single-chain antibody fragment-based adsorbent for the extracorporeal removal of $\beta$2-microglobulin. Kidney Int. 65: 310-322 https://doi.org/10.1111/j.1523-1755.2004.00377.x
  17. Kaiser, E. T., R. L. Colescott, C. D. Blossinger, and P. I. Cook. 1970. Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal. Biochem. 34: 595-598 https://doi.org/10.1016/0003-2697(70)90146-6
  18. Kihara, M., E. Chatani, M. Sakai, K. Hasegawa, H. Naiki, and Y. Goto. 2005. Seeding-dependent maturation of $\beta$2-microglobulin amyloid fibrils at neutral pH. J. Biol. Chem. 280: 12012-12018 https://doi.org/10.1074/jbc.M411949200
  19. Kim, H., J. K. Cho, W. J. Chung, and Y. S. Lee. 2004. Coreshell- type resins for solid-phase peptide synthesis: Comparison with gel-type resins in solid-phase photolytic cleavage reaction. Organic Lett. 6: 3273-3276 https://doi.org/10.1021/ol048815q
  20. Lornoy, W., I. Becaus, J. M. Billiouw, L. Sierens, P. V. Malderen, and P. D. Haenens. 2000. Hepatitis C and management of end-stage renal disease. Nephrol. Dial. Transplant. 15: 49- 54
  21. McParland, V. J., N. M. Kad, A. P. Kalverda, A. Brown, P. Kirwin-Jones, M. G. Hunter, M. Sunde, and S. E. Radford. 2000. Partially unfolded states of $\beta$2-microglobulin and amyloid formation in vitro. Biochemistry 39: 8735-8746 https://doi.org/10.1021/bi000276j
  22. Meinhofer, J., M. Waki, E. P. Heimer, T. J. Lambross, R. C. Makofske, and C. D. Chang. 1979. Solid phase synthesis without repetitive acidolysis: Preparation of leucyl-alanylglycyl- valine using 9-fluorenyl-methyloxy-carbonyl-amino acids. Int. J. Peptide Protein Res. 13: 35-42 https://doi.org/10.1111/j.1399-3011.1979.tb01847.x
  23. Mogi, M., M. Harada, T. Adachi, K. Kojima, and T. Nagatsu. 1989. Selective removal of $\beta$2-microglobulin from human plasma by high-performance immunoaffinity chromatography. J. Chromatogr. 496: 194-200 https://doi.org/10.1016/S0378-4347(00)82566-9
  24. Naiki, H., N. Hashimoto, S. Suzuki, H. Kimura, K. Nakakuki, and F. Gejyo. 1997. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 4: 223-232 https://doi.org/10.3109/13506129709003833
  25. Ohhashi, Y., M. Kihara, H. Naiki, and Y. Goto. 2005. Ultrasonication-induced amyloid fibril formation of $\beta$2- microglobulin. J. Biol. Chem. 280: 32843-32848 https://doi.org/10.1074/jbc.M506501200
  26. Ohhashi, Y., K. Hasegawa, H. Naiki, and Y. Goto. 2004. Optimum amyloid fibril formation of a peptide fragment suggests the amyloidogenic preference of $\beta$2-microglobulin under physiological conditions. J. Biol. Chem. 279: 10814-10821 https://doi.org/10.1074/jbc.M310334200
  27. Radford, S. E., W. S. Gosal, and G. W. Platt. 2005. Towards an understanding of the structural molecular mechanism of $\beta$2- microglobulin amyloid formation in vitro. Biochim. et Biophys. Acta 1753: 51-63 https://doi.org/10.1016/j.bbapap.2005.07.006
  28. Shabunina, I. V., O. I. Afanas'eva, and S. N. Pokrovskii. 2001. Immunosorbent for removal of $\beta$2-microglobulin from human blood plasma. Bull. Exp. Biol. Med. Immunol. Microbiol. 4: 984-986
  29. Singh, S. M. and A. K. Panda. 2005. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng. 99: 303-310 https://doi.org/10.1263/jbb.99.303
  30. Sunde, M., L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake. 1997. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273: 729- 739 https://doi.org/10.1006/jmbi.1997.1348
  31. Tsuchida, K., Y. Takemoto, and T. Nakamura. 1998. Lixelle adsorbent to remove inflammatory cytokines. Artif. Organs 22: 1064-1067 https://doi.org/10.1046/j.1525-1594.1998.06179.x
  32. Tsuchida, K., Y. Takemoto, and K. Sugimura. 2002. Adsorption of endotoxin by beta(2)-microglobulin adsorbent column (Lixelle): The new approach for endotoxinemia. Ther. Apher. 6: 116-118 https://doi.org/10.1046/j.1526-0968.2002.00412.x
  33. Winchester, J. F. 2005. Novel changes in $\beta$2-microglobulin in dialysis patients. Clin. Chem. 51: 1089-1090 https://doi.org/10.1373/clinchem.2005.051698
  34. Yamamoto, K., H. Yagi, D. Ozawa, K. Sasahara, H. Naiki, and Y. Goto. 2008. Thiol compounds inhibit the formation of amyloid fibrils by $\beta$2-microglobulin at neutral pH. J. Mol. Biol. 376: 258-268 https://doi.org/10.1016/j.jmb.2007.12.002
  35. Yamamoto, S., K. Hasegawa, I. Yamaguchi, S. Tsutsumi, J. Kardos, Y. Goto, F. Gejyo, and H. Naiki. 2004. Low concentrations of sodium dodecyl sulfate induce the extension of $\beta$2- microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43: 11075-11082 https://doi.org/10.1021/bi049262u
  36. Yamamoto, S., I. Yamaguchi, K. Hasegawa, S. Tsutsumi, Y. Goto, F. Gejyo, and H. Naiki. 2004. Glycosaminoglycans enhance the trifluoroethanol-induced extension of $\beta$2-microglobulin–related amyloid fibrils at a neutral pH. J. Am. Soc. Nephrol. 15: 126- 133 https://doi.org/10.1097/01.ASN.0000103228.81623.C7
  37. Lee, J. H., I. H. Lee, Y. J. Choe, S. Kang, H. Y. Kim, W. P. Gai, J. S. Hahn, and S. R. Paik. 2009. Real-time analysis of amyloid fibril formation of $\alpha$-synuclein with a fibrillation state-specific fluorescent probe of JC-1. Biochem. J. 418: 311-323 https://doi.org/10.1042/BJ20081572