Inactivation of the Wall-Associated De-N-acetylase (PgdA) of Listeria monocytogenes Results in Greater Susceptibility of the Cells to Induced Autolysis

  • Popowska, Magdalena (Department of General Microbiology, Institute of Microbiology, Faculty of Biology, Warsaw University) ;
  • Kusio, Monika (Department of General Microbiology, Institute of Microbiology, Faculty of Biology, Warsaw University) ;
  • Szymanska, Paulina (Department of General Microbiology, Institute of Microbiology, Faculty of Biology, Warsaw University) ;
  • Markiewicz, Zdzislaw (Department of General Microbiology, Institute of Microbiology, Faculty of Biology, Warsaw University)
  • Published : 2009.09.30

Abstract

Several species of Gram-positive bacteria have cell wall peptidoglycan (syn. murein) in which not all of the sugar moieties are N-acetylated. This has recently been shown to be a secondary effect, caused by the action of a peptidoglycan N-acetylglucosamine deacetylase. We have found that the opportunistic pathogen Listeria monocytogenes is unusual in having three enzymes with such activity, two of which remain in the cytoplasm. Here, we examine the enzyme (PgdA) that crosses the cytoplasmic membrane and is localized in the cell wall. We purified a hexa-His-tagged form of PgdA to study its activity and constructed a mutant devoid of functional Lmo0415 (PgdA) protein. L. monocytogenes PgdA protein exhibited peptidoglycan N-acetylglucosamine deacetylase activity with natural substrates (peptidoglycan) from both L. monocytogenes and Escherichia coli as well as the peptidoglycan sugar chain component N-acetylglucosamine, but not with N-acetylmuramic acid. As was reported recently [6], inactivation of the structural gene was not lethal for L. monocytogenes nor did it affect growth rate or morphology of the cells. However, the pgdA mutant was more prone to autolysis induced by such agents as Triton X-100 and EDTA, and is more susceptible to the cationic antimicrobial peptides (CAMP) lysozyme and mutanolysin, using either peptidoglycan muramidases or autolysis-inducing agents. The pgdA mutant was also slightly more susceptible than the wild-type strain to the action of certain beta-lactam antibiotics. Our results indicate that protein PgdA plays a protective physiological role for listerial cells.

Keywords

References

  1. Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL Workspace: A Web-based environment for protein structure homology modelling. Bioinformatics 22: 195- 201 https://doi.org/10.1093/bioinformatics/bti770
  2. Baj, J., I. Grabowska, and Z. Markiewicz. 1992 N-Unsubstituted glucosamine residues and other modifications in murein of the obligatory chemolithotroph Thiobacillus neapolitanus. Res. Microbiol. 143: 47-54 https://doi.org/10.1016/0923-2508(92)90033-K
  3. Bera, A., R. Biswas, S. Herbert, and F. Götz. 2006 The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect. Immun. 74: 4598-4604 https://doi.org/10.1128/IAI.00301-06
  4. Bishop, J. L., E. C. Boyle, and B. B. Finlay. 2007. Deception point: Peptidoglycan modification as a means of immune evasion. Proc. Natl. Acad. Sci. U.S.A. 104: 691-692 https://doi.org/10.1073/pnas.0611133104
  5. Bohne, J., H. Kestler, C. Uebele, Z. Sokolovic, and W. Goebel. 1996. Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Mol. Microbiol. 20: 1189-1198 https://doi.org/10.1111/j.1365-2958.1996.tb02639.x
  6. Boneca, I. G., O. Dussurget, D. Cabanes, M. A. Nahori, S. Sousa, M. Lecuit, et al. 2007. A critical role for peptidoglycan Ndeacetylation in Listeria evasion from the host innate immune system. Proc. Natl. Acad. Sci. U.S.A. 104: 997-1002 https://doi.org/10.1073/pnas.0609672104
  7. Cabanes, D., P. Dehoux, O. Dussurget, L. Frangeul, and P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10: 238-245 https://doi.org/10.1016/S0966-842X(02)02342-9
  8. Chatterjee, D. 1997. The mycobacterial cell wall: Structure, biosynthesis and sites of drug action. Curr. Opin. Chem. Biol. 1: 579-588 https://doi.org/10.1016/S1367-5931(97)80055-5
  9. Clarke, A. J. and C. Dupont. 1992. O-Acetylated peptidoglycan: Its occurrence, pathobiological significance, and biosynthesis. Can. J. Microbiol. 38: 85-91 https://doi.org/10.1139/m92-014
  10. Cossart, P. and C. Kocks. 1994. The actin-based motility of the facultative intracellular pathogen. Mol. Microbiol. 13: 395-402 https://doi.org/10.1111/j.1365-2958.1994.tb00434.x
  11. Cossart, P. and M. Lecuit. 1998. Interactions of Listeria monocytogenes with mammalian cells during entry and actinbased movement: Bacterial factors, cellular ligands and signaling. EMBO J. 17: 3797-3806 https://doi.org/10.1093/emboj/17.14.3797
  12. Cris$\acute{o}$stomo, M. I., W. Vollmer, A. S. Kharat, S. Inh$\ddot{u}$lsen, F. Gehre, S. Buckenmaier, and A. Tomasz. 2006. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Mol. Microbiol. 61: 1497-1509 https://doi.org/10.1111/j.1365-2958.2006.05340.x
  13. Dhar, G., K. F. Faull, and O. Scheewind. 2000. Anchor structure of cell wall surface proteins in Listeria monocytogenes. Biochemistry 39: 3725-3733 https://doi.org/10.1021/bi992347o
  14. Dietrich, G., S. Spreng, D. Favre, J. F. Viret, and C. A. Guzman. 2003. Live attenuated bacteria as vectors to deliver plasmid DNA vaccines. Curr. Opin. Mol. Ther. 5: 10-19
  15. Fiedler, F. and G. J. Ruhland. 1987. Structure of Listeria monocytogenes cell walls. Bull. Inst. Pasteur 85: 287-300
  16. Glauner, B. 1988. Separation and quantification of muropeptides by high performance liquid chromatography. Anal. Biochem. 172: 451-464 https://doi.org/10.1016/0003-2697(88)90468-X
  17. Hayashi, H., Y. Araki, and E. Ito. 1973. Occurrence of glucosamine residues with free amino groups in cell wall peptidoglycan from bacilli as a factor responsible for resistance to lysozyme. J. Bacteriol. 113: 592-598
  18. H$\acute{e}$bert, L., P. Courtin, R. Torelli, M. Sanguinetti, M. P. Chapot- Chartier, Y. Auffray, and A. Benachour. 2007. Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Infect. Immun. 75: 5390-5398 https://doi.org/10.1128/IAI.00571-07
  19. Hof, H. 2004. An update on the medical management of listeriosis. Expert Opin. Pharmacother. 5: 1727-1735 https://doi.org/10.1517/14656566.5.8.1727
  20. Kamisango, K., I. Saiki, Y. Tanio, H. Okumura, Y. Araki, I. Sekikawa, I. Azuma, and Y. Yamamura. 1982. Structures and biological activities of mureins of Listeria monocytogenes and Propionibacterium acnes. J. Biochem. 92: 23-33
  21. Kopp, J. and T. Schwede. 2004. The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucl. Acids Res. 32: D230-D234 https://doi.org/10.1093/nar/gkh008
  22. McLaughlan, A. M. and J. Foster. 1998. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiology 144: 1359-1367 https://doi.org/10.1099/00221287-144-5-1359
  23. McLaughlin, J. 1993. Listeriosis and L. monocytogenes. Env. Policy Practice 3: 201-214
  24. Meyrand, M., A. Boughammoura, P. Courtin, C. M$\acute{e}$zange, A. Guillot, and M. P. Chapot-Chartier. 2007 Peptidoglycan Nacetylglucosamine deacetylation decreases autolysis in Lactococcus lactis. Microbiology 153: 3275-3285 https://doi.org/10.1099/mic.0.2007/005835-0
  25. National Committee for Clinical Laboratory Standards. 2000. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard Fifth Edition. M7- A5: 1-54
  26. Park, S. F. and G. S. Stewart. 1990. High-efficiency transformation of Listeria monocytogenes by electroporation of penicillintreated cells. Gene 28: 129-132
  27. Pilgrim, S., J. Stritzker, C. Schoen, A. Kolb-Maurer, G. Geginat, M. J. Loessner, I. Gentschev, and W. Goebel. 2003. Bactoinfection of mammalian cells by Listeria monocytogenes: Improvement and mechanism of DNA delivery. Gene Ther. 10: 2036-2045 https://doi.org/10.1038/sj.gt.3302105
  28. Popowska, M. and Z. Markiewicz. 2006. Characterization of protein Lmo0327 of Listeria monocytogenes with murein hydrolase activity. Arch. Microbiol. 186: 69-86 https://doi.org/10.1007/s00203-006-0122-8
  29. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  30. Schaferkordt, S. and T. Chakraborty. 1995. Vector plasmid for insertional mutagenesis and directional cloning in Listeria ssp. Biotechniques 19: 720-725
  31. Schleifer, K. H. and O. Kandler. 1972. Murein types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477
  32. Schmelzer, E., J. Weckesser, R. Warth, and H. Mayer. 1982. Peptidoglycan of Rhodopseudomonas viridis: Partial lack of N-acetyl substitution of glucosamine. J. Bacteriol. 149: 151- 155
  33. Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL: An automated protein homology-modeling server. Nucl. Acids Res. 31: 3381-3385 https://doi.org/10.1093/nar/gkg520
  34. Southwick, F. H. and D. L. Purich. 1996. Intracellular pathogenesis of listeriosis. NEJM 334: 770-776 https://doi.org/10.1056/NEJM199603213341206
  35. Srivastava, K. K. and I. H. Siddique. 1978. Quantitative chemical composition of murein of Listeria monocytogenes. Infect. Immun. 7: 700-703
  36. Stritzker, J., J. Janda, C. Schoen, M. Taupp, S. Pilgrim, I. Gentschev, P. Schreier, G. Geginat, and W. Goebel. 2004. Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect. Immun. 72: 5622-5629 https://doi.org/10.1128/IAI.72.10.5622-5629.2004
  37. Thompson, R. J., H. R. Bouwer, D. A. Portnoy, and F. R. Frankel. 1998. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infect. Immun. 66: 3552-3561
  38. Vollmer, W. and A. Tomasz. 2000. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J. Biol. Chem. 275: 20496-20501 https://doi.org/10.1074/jbc.M910189199
  39. Vollmer, W. and A. Tomasz. 2002. Peptidoglycan Nacetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect. Immun. 70: 7176-7178 https://doi.org/10.1128/IAI.70.12.7176-7178.2002
  40. Vollmer, W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 322: 287-306 https://doi.org/10.1111/j.1574-6976.2007.00088.x