Monitoring of Cleavage Preference for Caspase-3 Using Recombinant Protein Substrates

  • Park, Kyoung-Sook (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yi, So-Yeon (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Un-Lyoung (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Chang-Soo (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chung, Jin-Woong (Department of Biological Science, Dong-A University) ;
  • Chung, Sang-J. (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Moon-Il (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2009.09.30

Abstract

The apoptotic caspases have been classified in accordance with their substrate specificities, as the optimal tetrapeptide recognition motifs for a variety of caspases have been determined via positional scanning substrate combinatorial library technology. Here, we focused on two proteolytic recognition motifs, DEVD and IETD, owing to their extensive use in cell death assay. Although DEVE and IETD have been generally considered to be selective for caspase-3 and -8, respectively, the proteolytic cleavage of these substrates does not display absolute specificity for a particular caspase. Thus, we attempted to monitor the cleavage preference for caspase-3, particularly using the recombinant protein substrates. For this aim, the chimeric GST:DEVD:EGFP and GST:IETD:EGFP proteins were genetically constructed by linking GST and EGFP with the linkers harboring DEVD and IETD. To our best knowledge, this work constitutes the first application for the monitoring of cleavage preference employing the recombinant protein substrates that simultaneously allow for mass and fluorescence analyses. Consequently, GST:IETD:EGFP was cleaved partially in response to caspase-3, whereas GST:DEVD:EGFP was completely proteolyzed, indicating that GST:DEVD:EGFP is a better substrate than GST:IETD:EGFP for caspase-3. Collectively, using these chimeric protein substrates, we have successfully evaluated the feasibility of the recombinant protein substrate for applicability to the monitoring of cleavage preference for caspase-3.

Keywords

References

  1. Alnemri, E. S., D. J. Livingston, D. W. Nicholson, G. Salvesen, N. A. Thornberry, W. W. Wong, and J. Yuan. 1996. Human ICE/CED-3 protease nomenclature. Cell 87: 171 https://doi.org/10.1016/S0092-8674(00)81334-3
  2. Casciola-Rosen, L. A., G. J. Anhalt, and A. Rosen. 1995. DNAdependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182: 1625-1634 https://doi.org/10.1084/jem.182.6.1625
  3. Crow, M. T., K. Mani, Y. J. Nam, and R. N. Kitsis. 2004. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ. Res. 95: 957-970 https://doi.org/10.1161/01.RES.0000148632.35500.d9
  4. Earnshaw, W. C., L. M. Martins, and S. H. Kaufmann. 1999. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383-424 https://doi.org/10.1146/annurev.biochem.68.1.383
  5. Janicke, R. U., P. Ng, M. L. Sprengart, and A. G. Porter. 1998. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273: 15540-15545 https://doi.org/10.1074/jbc.273.25.15540
  6. Jeong, E. J., K. Park, S. Y. Yi, H. J. Kang, S. J. Chung, C. S. Lee, et al. 2007. Stress-governed expression and purification of human type II hexokinase in Escherichia coli. J. Microbiol. Biotechnol. 17: 638-643
  7. Jin, Z. and W. S. El-Deiry. 2005. Overview of cell death signaling pathways. Cancer Biol. Ther. 4: 139-163 https://doi.org/10.4161/cbt.4.2.1508
  8. Khosravi-Far, R. and M. D. Esposti. 2004. Death receptor signals to mitochondria. Cancer Biol. Ther. 3: 1051-1057 https://doi.org/10.4161/cbt.3.11.1173
  9. Kim, J. H., D. H. Kim, M. R. Kim, H. J. Kwon, T. K. Oh, and C. H. Lee. 2005. Gentisyl alcohol inhibits apoptosis by suppressing caspase activity induced by etoposide. J. Microbiol. Biotechnol. 15: 532-536
  10. Kim, M., K. Park, E. J. Jeong, Y. B. Shin, and B. H. Chung. 2006. Surface plasmon resonance imaging analysis of proteinprotein interactions using on-chip-expressed capture protein. Anal. Biochem. 351: 298-304 https://doi.org/10.1016/j.ab.2006.01.042
  11. Nicholson, D. W., A. Ali, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. Gallant, et al. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37-43 https://doi.org/10.1038/376037a0
  12. Park, K., J. Ahn, S. Y. Yi, M. Kim, and B. H. Chung. 2008. SPR imaging-based monitoring of caspase-3 activation. Biochem. Biophys. Res. Commun. 368: 684-689 https://doi.org/10.1016/j.bbrc.2008.01.137
  13. Park, K., H. J. Kang, J. Ahn, S. Y. Yi, S. H. Han, H. J. Park, S. J. Chung, B. H. Chung, and M. Kim. 2008. A potent reporter applicable to the monitoring of caspase-3-dependent proteolytic cleavage. J. Biotech. 138: 17-23 https://doi.org/10.1016/j.jbiotec.2008.07.1999
  14. Rhéaume, E., L. Y. Cohen, F. Uhlmann, C. Lazure, A. Alam, J. Hurwitz, R. P. S$\acute{e}$kaly, and F. Denis. 1997. The large subunit of replication factor C is a substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-mediated apoptosis. EMBO J. 16: 6346-6354 https://doi.org/10.1093/emboj/16.21.6346
  15. Ro, H. S., H. K. Park, M. G. Kim, and B. H. Chung. 2005. In vitro formation of protein nanoparticle using recombinant human ferritin H and L chains produced from E. coli. J. Microbiol. Biotechnol. 15: 254-258
  16. Smith, G. K., D. S. Duch, I. K. Dev, and S. H. Kaufmann. 1992. Metabolic effects and kill of human T-cell leukemia by 5- deazaacyclotetrahydrofolate, a specific inhibitor of glycineamide ribonucleotide transformylase. Cancer Res. 52: 4895-4903
  17. Srinivasula, S. M., M. Ahmad, T. Fernandes-Alnemri, G. Litwack, and E. S. Alnemri. 1996. Molecular ordering of the Fasapoptotic pathway: The Fas/APO-1 protease Mch5 is a CrmAinhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. U.S.A. 93: 14486- 14491 https://doi.org/10.1073/pnas.93.25.14486
  18. Stennicke, H. R. and G. S. Salvesen. 1999. Caspases: Preparation and characterization. Methods 17: 313-319 https://doi.org/10.1006/meth.1999.0745
  19. Stennicke, H. R. and G. S. Salvesen. 1999. Catalytic properties of the caspases. Cell Death Differ. 6: 1054-1059 https://doi.org/10.1038/sj.cdd.4400599
  20. Tewari, M., L. T. Quan, K. O'Rourke, S. Desnoyers, Z. Zeng, D. R. Beidler, G. G. Poirier, G. S. Salvesen, and V. M. Dixit. 1995. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 81: 801-809 https://doi.org/10.1016/0092-8674(95)90541-3
  21. Thornberry, N. A. and Y. Lazebnik. 1998. Caspases: Enemies within. Science 281: 1312-1316 https://doi.org/10.1126/science.281.5381.1312
  22. Thornberry, N. A., T. A. Rano, E. P. Peterson, D. M. Rasper, T. Timkey, M. Garcia-Calvo, et al. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272: 17907-17911 https://doi.org/10.1074/jbc.272.29.17907
  23. Zhivotovsky, B. 2003. Caspases: The enzymes of death. Essays Biochem. 39: 25-40