Development and Characterization of New Microsatellite Markers for the Oyster Mushroom (Pleurotus ostreatus)

  • Ma, Kyung-Ho (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Lee, Gi-An (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Lee, Sok-Young (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Gwag, Jae-Gyun (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Kim, Tae-San (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute Horticultural and Herbal Science, RDA) ;
  • Seo, Kyoung-In (Mushroom Research Division, National Institute Horticultural and Herbal Science, RDA) ;
  • Lee, Gang-Seob (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Park, Yong-Jin (Department of Plant Resoures, College of Industrial Sciences, National Kongju University)
  • Published : 2009.09.30

Abstract

We developed and characterized 36 polymorphic microsatellite markers for the oyster mushroom (Pleurotus ostreatus). In total, 169 alleles were identified with an average of 4.7 alleles per locus. Values for observed ($H_o$) and expected ($H_E$) heterozygosities ranged from 0.027 to 0.946 and from 0.027 to 0.810, respectively. Nineteen loci deviated from Hardy-Weinberg equilibrium. Significant (P<0.05) excess heterozygosity was observed at nine loci. Linkage disequilibrium (LD) was significant (P<0.05) between pairs of locus alleles. Cluster analysis revealed that five species of genus Pleurotus made a distinct group, and the individual cultivars were grouped into major five groups from G-1 to G-5. The diverse cultivars of P. ostreatus were discriminated and the other four species revealed a different section in the UPGMA tree. These microsatellite markers proved to be very useful tools for genetic studies, including assessment of the diversity and population structure of P. ostreatus.

Keywords

References

  1. Bezalel, L., Y. Hadar, and C. E. Cerniglia. 1997. Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 63: 2495-2501
  2. Bobek, P., S. Galbavy, and L. Ozdin. 1998. Effect of oyster mushroom (Pleurotus ostreatus) on pathological changes in dimethylhydrazine-induced rat colon cancer. Oncol. Rep. 5: 727-730
  3. Curreli, N., F. Sollai, L. Massa, O. Comandini, A. Rufo, E. Sanjust, A. Rinaldi, and A. C. Rinaldi. 2001. Effects of plantderived naphthoquinones on the growth of Pleurotus sajor-caju and degradation of the compounds by fungal cultures. J. Basic Microbiol. 41: 253-259 https://doi.org/10.1002/1521-4028(200110)41:5<253::AID-JOBM253>3.0.CO;2-R
  4. Dixit, A., M. H. Jin, J. W. Chung, J. W. Yu, H. K. Chung, K. H. Ma, Y. J. Park, and E. G. Cho. 2005. Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol. Ecol. Notes 5: 736-738 https://doi.org/10.1111/j.1471-8286.2005.01048.x
  5. Gonzalez, P. and J. Labarere. 2000. Phylogenetic relationships of Pleurotus species according to the sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6 and V9 domains. Microbiology 146: 209-221
  6. Kim, K. Y. 2004. Developing one-step program (SSR MANAGER) for rapid identification of clones with SSRs and primer designing. Thesis (MSc), Department of Plant Science, the Graduate School of Seoul National University, Seoul, Republic of Korea
  7. Kurashige, S., Y. Akuzawa, and F. Endo. 1997. Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak, and activities of macrophages and lymphocytes in mice treated with a carcinogen, N-butyl-N-butanolnitrosoamine. Immunopharmacol. Immunotoxicol. 19: 175-183 https://doi.org/10.3109/08923979709007657
  8. Kweon, M. H., H. Jang, W. J. Lim, H. I. Chang, C. W. Kim, H. C. Yang, H. J. Hwang, and H. C. Sung. 1999. Anti-complementary properties of polysaccharides isolated from fruit bodies of mushroom Pleurotus ostreatus. J. Microbiol. Biotechnol. 9: 450- 456
  9. Liu, K. and S. V. Muse. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129 https://doi.org/10.1093/bioinformatics/bti282
  10. Matsumoto, T. and Y. Fukumasa-Nakai. 1995. Mitochondrial DNA restriction fragment length polymorphisms and phenetic relationships in natural populations of the oyster mushroom Pleurotus ostreatus. Mycol. Res. 99: 562-566 https://doi.org/10.1016/S0953-7562(09)80714-4
  11. Matsumoto, T., K. Mimura, and Y. Fukumasa-Nakai. 1995. Isozyme variation and genetic relatedness among natural populations of Pleurotus ostreatus. J. Gen. Appl. Microbiol. 41: 487-497 https://doi.org/10.2323/jgam.41.487
  12. Ministry of Agriculture and Forestry. 2007. An Actual Yield of Cash Crops in 2006. Ministry of Agriculture and Forestry, Seoul, The Republic of Korea
  13. Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18: 233-234 https://doi.org/10.1038/72708
  14. Shin, K., I. Oh, and C. Kim. 1997. Production and purification of remazol brilliant blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl. Environ. Microbiol. 63: 1744-1748
  15. Sigoillot, C., S. Camarero, T. Vidal, E. Record, M. Asther, M. Perez-Boada, et al. 2005. Comparison of different fungal enzymes for bleaching high-quality paper pulps. J. Biotechnol. 115: 333- 343 https://doi.org/10.1016/j.jbiotec.2004.09.006
  16. Wang, H., J. Gao, and T. B. Ng. 2000. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem. Biophys. Res. Commun. 275: 810-816 https://doi.org/10.1006/bbrc.2000.3373
  17. Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE Version 1.31. Microsoft Windows-based freeware for population genetic analysis. University of Alberta and Centre for International Forestry Research, Edmonton, AB, Canada