Compressive Sensing Reconstruction Based on the Quantization Constraint Sets

양자화 제한 집합에 기초한 컴프레시브 센싱 복구

  • Kim, Dong-Sik (Department of Electronics and Information Engineering, Hankuk University of Foreign Studies)
  • 김동식 (한국외국어대학교 전자정보공학부)
  • Published : 2009.09.25

Abstract

In this paper, a convex optimization technique, which is based on the generalized quantization constraint (GQC), is proposed in the compressive sensing reconstruction using quantized measures. The set size of the proposed GQC can be controlled, and through extensive numerical simulations based on the uniform scalar quantizers, the CS reconstruction errors are improved by 3.4-3.6dB compared to the traditional QC method for the CS problems of m/klogn > 2.

본 논문에서는, 컴프레시브 센싱(compressive sensing, CS)에서 양자화된 측정을 사용하여 CS 복구(reconstruction)를 하는 경우에 일반화된 양자화 제한(generalized quantization constraint, GQC) 집합을 사용하여 convex 최적화를 수행하는 방법을 제안하였다. 제안한 GQC에서는 기존의 양자화 제한 집합의 크기를 조정할 수 있도록 하였으며, 균일 스칼라 양자기를 사용한 CS 복구의 모의실험을 통하여 m/klogn > 2 인 CS 문제에서, 기존의 QC 방법에 비하여 CS 복구의 에러에서 3.4-3.6dB의 성능 개선을 얻을 수 있었다.

Keywords

References

  1. D. L. Donoho, "Compressed sensing," IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006 https://doi.org/10.1109/TIT.2006.871582
  2. E. Candes, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207-1223, Aug. 2006 https://doi.org/10.1002/cpa.20124
  3. W. Dai, H. V. Pham, and O. Milenkovic, "A comparative study of quantized compressive sensing schemes," in Proc. Int. Symp. Inform. Theory, June 2009. pp. 6-10
  4. J. Z. Sun, and V. K. Goyal, "Optimal quantization of random measurements in compressed sensing," in Proc. Int. Symposium of Information Theory, June 2009. pp. 6-10
  5. E. Ardestanizadeh, M. Cheraghchi, and A. Shokrollahi, "Bit precision analysis for compressed sensing," in Proc. Int. Symp. Inform. Theory, June 2009. pp. 1-5
  6. V. K. Goyal, A. K. Fletcher, and S. Rangan, "Compressive sampling and lossy compression," IEEE Signal Processing Mag., vol. 25, no. 2, pp. 48-56, March 2008 https://doi.org/10.1109/MSP.2007.915001
  7. E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Mag., vol. 25, no. 2, pp. 21-30, March 2008 https://doi.org/10.1109/MSP.2007.914731
  8. E. Candes and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans. Inform. Theory, vol. 52, no. 12, pp. 5406-5425, Dec. 2006 https://doi.org/10.1109/TIT.2006.885507
  9. J. Romberg, "Imaging via compressive sampling," IEEE Signal Processing Mag., vol. 25, no. 2, pp. 15-20, March 2008 https://doi.org/10.1109/MSP.2008.918412
  10. D. L. Donoho and P. B. Stark, "Uncertainty principles and signal recovery," SIAM J. Appl. Math., vol. 49, no. 3, pp. 906-931, June 1989 https://doi.org/10.1137/0149053
  11. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. NY: Springer, 2001
  12. S. H. Park and D. S. Kim, "Theory of prediction onto narrow quantization constraint set and its application," IEEE Trans. Image Processing, vol. 8, no. 10, pp. 1361-1373, Oct. 1999 https://doi.org/10.1109/83.791962
  13. K. Lee, D. S. Kim, and T. Kim, "Regression- based prediction for blocking artifact reduction in JPEG-compressed images," IEEE Trans. Image Processing, vol. 14, no. 1, pp. 36-48, Jan. 2005 https://doi.org/10.1109/TIP.2004.838699
  14. D. S. Kim and S. H. Park, "Postprocesing for vector-quantized images based on projection onto hypercubes," IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 4, pp. 802-814, Jun. 2001 https://doi.org/10.1109/76.931108
  15. N. S. Jayant and P. Noll, Digital Coding of Waveforms. New Jersey: Prentice-Hall, 1984