Reactive Compatibilization of Amorphous Poly-${\alpha}$-olefins/Amorphous Polyamide Blends

무정형 알파-올레핀 고분자/무정형 폴리아미드 블렌드의 반응 상용화

  • Yun, Deok-Woo (Department of Polymer Science and Engineering, Inha University) ;
  • Choi, Mi-Ju (Department of Polymer Science and Engineering, Inha University) ;
  • Hwang, Kyu-Hee (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Geon-Seok (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang-Hee (Department of Polymer Science and Engineering, Inha University)
  • 윤덕우 (인하대학교 고분자공학과) ;
  • 최미주 (인하대학교 고분자공학과) ;
  • 황규희 (인하대학교 고분자공학과) ;
  • 김건석 (인하대학교 고분자공학과) ;
  • 이광희 (인하대학교 고분자공학과)
  • Published : 2009.09.25

Abstract

The reactive compatibilization of amorphous poly-${\alpha}$-olefins (APAO)/amorphous polyamide (aPA) blends was carried out using two kinds of reactive compatibilizers such as maleated polypropylene and ethylene-glycidyl methacrylate-methyl acrylate copolymer. The grafting reaction rates between aPA and the compatibilizers were examined using FT-IR, SEM and rheometer. The effect of the reactive compatibilization on the mechanical property of the blends was investigated with a universal testing machine. The adhesion strength of the blends including a hydrocarbon tackifier resin, C9 was also measured.

Maleated 폴리프로필렌과 에틸렌-글리시딜 메타크릴레이트-메틸 아크릴레이트의 공중합체를 반응성 상용화제로 사용하여 무정형 알파올레핀 고분자/무정형 폴리아미드 블렌드의 반응 상용화를 시도하였다. 무정형 폴리아미드와 상용화제간의 그래프트 반응 정도는 FT-IR, SEM 및 rheometer로 조사하였다. 반응상용화에 따른 블렌드의 기계적 물성 변화 및 하이드로카본 형태의 점착부여수지를 첨가한 블렌드의 접착강도는 만능시험기로 조사하였다.

Keywords

References

  1. M. Viljanmaa, A. Sodergard, and P. Tormala Int. J. Adhes. Adhes., 22, 447 (2002) https://doi.org/10.1016/S0143-7496(02)00027-1
  2. F. Oikawa, Setchaku, 44, 345 (2000)
  3. Y. Wang, L. A. Moore, and G. Raykovitz, U.S.Patent 657859 (2007)
  4. J. Heidarian, N. M. Ghasem, and D. Wan, J. Appl. Polym. Sci., 99, 1817 (2006) https://doi.org/10.1002/app.22714
  5. S. Yamakawa, Polym. Eng. Sci., 16, 411 (1976) https://doi.org/10.1002/pen.760160606
  6. S. Filippi, L. Minkova, N. Dintcheva, P. Narducci, and P. Magagnini, Polymer, 46, 8054 (2005) https://doi.org/10.1016/j.polymer.2005.06.090
  7. C. Marco, G. Ellis, M. A. Gomez, J. G. Fatou, J. M. Arribas, I. Campoy, and A. Fontecha, J. Appl. Polym. Sci., 65, 2665 (1997)
  8. S. M. Hong, S. S. Hwang, J. S. Choi, and H. J. Choi, J. Appl. Polym. Sci., 101, 1188 (2006)
  9. E. Laredo, M. Grimau, A. Bello, F. Sanchez, M. A. Gomez, C. Marco, I. Campoy, and J. M. Arribas, J. Polym. Sci. Part B: Polym. Phys., 43, 1408 (2005) https://doi.org/10.1002/polb.20421
  10. Y. S. Seo and T. H. Ninh, Polymer, 45, 8573 (2007) https://doi.org/10.1016/j.polymer.2004.10.006
  11. M. Abdouss, N. S. Sanjani, F. Azizinejad, and M. Shabni, J. Appl. Polym. Sci., 92, 2871 (2004) https://doi.org/10.1002/app.20207
  12. G. H. Hu, H. Cartier, L. F. Feng, and B. G. Li, J. Appl. Polym. Sci., 91, 1498 (2004) https://doi.org/10.1002/app.13329
  13. J. Ufheil, M. C. Baertsch, A. Wuersig, and P. Novak, Electrochimica Acta, 50, 1733 (2005) https://doi.org/10.1016/j.electacta.2004.10.061
  14. C. Q. Yang, X. Wang, and Y. Lu, J. Appl. Polym. Sci., 75, 327 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000110)75:2<327::AID-APP15>3.0.CO;2-F
  15. D. Sek and B. Kaczmarczyk, Polymer, 39, 3327 (1998) https://doi.org/10.1016/S0032-3861(97)10288-9
  16. S. Sun, Z. Tan, C. Zhou, M. Zhang, and H. Zhang, Polym. Composites, 28, 484 (2007) https://doi.org/10.1002/pc.20318
  17. S. Y. Seong, J. K. Lee, K. H. Lee, and B. J. Jin, Polymer (Korea), 25, 848 (2001)
  18. S. S. Dagil and K. M. Kamdar, Polym. Eng. Sci., 34, 1709 (1994) https://doi.org/10.1002/pen.760342302
  19. J. K. Kim and H. Lee, Polymer, 37, 305 (1996) https://doi.org/10.1016/0032-3861(96)81103-7
  20. B. M. Jang, J. S. Jang, S. S. Park, D. J. Choi, and S. K. Kim, Polymer(Korea), 25, 142 (2001)
  21. H. Li, T. Chiba, N. Higashida, Y. Yang, and T. Inoue, Polymer, 38, 3921 (1997) https://doi.org/10.1016/S0032-3861(97)86333-1