DOI QR코드

DOI QR Code

FINITE GROUPS WHICH HAVE MANY NORMAL SUBGROUPS

  • Zhang, Qinhai (DEPARTMENT OF MATHEMATICS SHANXI NORMAL UNIVERSITY) ;
  • Guo, Xiaoqiang (DEPARTMENT OF MATHEMATICS HEBEI POLYTECHNIC UNIVERSITY) ;
  • Qu, Haipeng (DEPARTMENT OF MATHEMATICS SHANXI NORMAL UNIVERSITY) ;
  • Xu, Mingyao (DEPARTMENT OF MATHEMATICS SHANXI NORMAL UNIVERSITY)
  • 발행 : 2009.11.01

초록

In this paper we classify finite groups whose nonnormal subgroups are of order p or pq, where p, q are primes. As a by-product, we also classify the finite groups in which all nonnormal subgroups are cyclic.

키워드

참고문헌

  1. Y. Berkovich, On subgroups of finite p-groups, J. Algebra 224 (2000), no. 2, 198-240. https://doi.org/10.1006/jabr.1999.8004
  2. R. Dedekind, Uber Gruppen, deren samtliche Teiler Normalteiler sind, Math. Ann. 48 (1897), 548-561. https://doi.org/10.1007/BF01447922
  3. D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups. Number 6. Part IV, The special odd case. Mathematical Surveys and Monographs, 40.6. American Mathematical Society, Providence, RI, 2005.
  4. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.
  5. H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, Springer, 2004.
  6. D. S. Passman, Nonnormal subgroups of p-groups, J. Algebra 15 (1970), 352-370. https://doi.org/10.1016/0021-8693(70)90064-5
  7. L. R´edei, Das schiefe Product in der Gruppentheorie, Comment. Math. Helvet. 20 (1947), 225-267. https://doi.org/10.1007/BF02568131
  8. M. Xu, H. Qu, and Q. Zhang, Finite p-groups all of whose subgroups of index $p^2$ are metacyclic, submitted.
  9. Q. Zhang and J. Cao, Finite groups whose nontrivial normal subgroups have the same order, J. Math. Res. Exposition 28 (2008), no. 4, 807-812.

피인용 문헌

  1. The number of conjugacy classes of nonnormal subgroups of finite p -groups vol.466, 2016, https://doi.org/10.1016/j.jalgebra.2016.06.027
  2. FINITE NON-NILPOTENT GENERALIZATIONS OF HAMILTONIAN GROUPS vol.48, pp.6, 2011, https://doi.org/10.4134/BKMS.2011.48.6.1147
  3. Finite 2-groups whose nonnormal subgroups have orders at most 23 vol.7, pp.5, 2012, https://doi.org/10.1007/s11464-012-0216-3
  4. Generalised norms in finite soluble groups vol.402, 2014, https://doi.org/10.1016/j.jalgebra.2013.12.012
  5. Finite groups in which the normal closures of non-normal subgroups have the same order vol.15, pp.07, 2016, https://doi.org/10.1142/S0219498816501255
  6. On finite p-groups with few normal subgroups vol.16, pp.08, 2017, https://doi.org/10.1142/S0219498817501596
  7. Finite p-groups whose nonnormal subgroups have orders at most p 3 vol.9, pp.5, 2014, https://doi.org/10.1007/s11464-014-0389-z
  8. NOMALIZERS OF NONNORMAL SUBGROUPS OF FINITE p-GROUPS vol.49, pp.1, 2012, https://doi.org/10.4134/JKMS.2012.49.1.201
  9. Groups with Certain Normality Conditions vol.44, pp.8, 2016, https://doi.org/10.1080/00927872.2015.1044104
  10. Finite 2-groups whose length of chain of nonnormal subgroups is at most 2 vol.13, pp.5, 2018, https://doi.org/10.1007/s11464-018-0719-7
  11. Finite p-groups whose non-normal subgroups have few orders vol.13, pp.4, 2018, https://doi.org/10.1007/s11464-018-0693-0