DOI QR코드

DOI QR Code

Analysis of Bed Material Changes by Flushing Flow from Daecheong Dam

대청댐에서 증가방류에 의한 하상토의 변화 분석

  • 장창래 (충주대학교 공과대학 토목공학) ;
  • 우효섭 (한국건설기술연구원 하천.해안연구실)
  • Published : 2009.10.30

Abstract

In this study, changing characteristics of bed materials downstream of Daecheong Dam by flushing flow was investigated. Flushing flow affected the downstream environment in such a way that the mean diameter of bed material was increased and the standard deviation was decreased. The vertical sorting of bed materials composed of mixed sediment in the sediment box was observed. The surface layer was composed of gravels, and uniform sand material was buried below it. Relative fractions (Di/D50) of the bed material trapped in the box was nearly 1.0 for the bed material coarser than D$_{50}$ at Hyundo gauging station, and was between two values on the bed surface before and after the flushing flow at Bugang gauging station. Ratio of driving force to resisting force for each fraction ($\tau_i^*$) with the faction size maintained constant for the bed material coarser than D$_{50}$ at Hyundo station. At Bugang station, however, it was rapidly decreased. It means that pavement of the surface layer of bed material at Bugang station was developed, with the sediment particles moving downstream uniformly by flushing flow.

본 연구에서는 대청댐 하류 구간에서 증가방류에 의한 유사의 이송 및 하상토의 변화 특성을 분석하였다. 증가방류에 의해 하상토의 평균입경은 증가하고, 표준편차는 작아지며, 입경분포는 균등하게 변하였다. 혼합사로 구성된 하상토의 표층은 굵은 자갈로 형성되었고, 저층은 모래로 구성되었으며, 유사의 수직분급이 발생하였다. 유사의 거동은 소류사 형태로 이동하였다. 혼합사의 거동을 파악하기 위해서 유사 채집상자에 포착된 유사의 통과중량 백분율에 대한 상대입경비(D$_i$/D$_{50}$)를 분석한 결과, 현도지점에서 상대입경비는 D$_{50}$ 보다 큰 경우에 약 1.0으로 거의 일정하게 유지되고 있으며, 부강 지점에서 상대입경비는 증가방류 전과 후의 중간에 있었다. 현도수위표에서 하상토의 입경에 대하여 개별입자에 대한 작용력과 저항력의 비($\tau_i^*$)는 D$_{50}$ 보다 큰 경우에 일정하게 유지되었으며, 부강수위표에서는 크게 감소하였다. 이것은 댐 직하류에서 장갑화 현상이 부강수위표보다 크게 되었다는 것을 의미하며, 증가방류에 의해 입경이 균일하게 이송하는 것을 알 수 있다.

Keywords

References

  1. 건설교통부 (2002). 금강수계 하천정비기본계획, pp. 401-429.
  2. 건설부 (1974). 금강하천정비기본계획.
  3. 건설부 (1983). 금강 하상변동 조사보고서(1).
  4. 건설부 (1988). 금강수계종합정비계획(Ⅱ), pp. 3-101-3-140.
  5. 박봉진, 장창래, 이삼희, 정관수 (2008). "댐 하류하천의 사주와 식생 면적 변화에 관한 연구." 한국수자원학회논문집, 제41권, 제12호, pp. 1163-1172. https://doi.org/10.3741/JKWRA.2008.41.12.1163
  6. 장창래, 김기흥, 정수동, 조강현, 이승휘, 배연재 (2008). 하천교란백서, 자연과 함께하는 하천복원 기술개발연구단(ECORIVER21), pp. 110-111.
  7. 장창래, 정관수, 김재한 (2004). "혼합사로 구성된 하천에서 하상변동 및 유사의 입도분포 계산을 위한 수치모형 개발." 한국수자원학회논문집, 제37권, 제5호, pp. 387-395. https://doi.org/10.3741/JKWRA.2004.37.5.387
  8. 정세웅 (2004). "저수지 플러싱 방류 효과분석을 위한 비정상상태 하천수질모의 적용." 한국수자원학회논문집, 제37권, 제10호, pp. 857-868. https://doi.org/10.3741/JKWRA.2004.37.10.857
  9. 우효섭 (2004). 하천수리학, 청문각, pp. 93-94.
  10. 우효섭, 박성제 (1999). "그랜드캐년 인공홍수-배경 및 효과." 대한토목학회지, 제47권, 제5호, pp. 84-96.
  11. 최성욱, 윤병만, 우효섭, 조강현 (2004). "댐 건설에 의한 유황변화에 따른 하류 하도에서 하천지형학적 변화 및 식생피복의 변화: 황강 합천댐 사례." 한국수자원학회논문집, 제27권, 제1호, pp. 55-66. https://doi.org/10.3741/JKWRA.2004.37.1.055
  12. Dietrich, W.E., Kirchner, J.W., Ikeda, H., and Iseya, F. (1989). "Sediment supply and the development of the coarse surface layer in gravel-bedded rivers." Nature, Vol. 340, pp. 215-217. https://doi.org/10.1038/340215a0
  13. Erskine, W.D., Terrazolo, N., and Warner, R.F. (1999). "River rehabilitation from the hydrogeomorphic impacts of a large hydro-electric power project: Snowy River. Australia." Regulated Rivers: Research and Management, Vol. 15, pp. 3-24. https://doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<3::AID-RRR532>3.0.CO;2-R
  14. Galay, V.J. (1983). "Causes of river bed degradation." Water Resources Research, Vol. 19, No. 5, pp. 1057-1090. https://doi.org/10.1029/WR019i005p01057
  15. Garcia, M.H. (2008). "Sediment transport and morphodynamics." in Sedimentation Engineering: processes, management, modeling and practice, edited by M.H. Garcia, pp. 21-163, ASCE.
  16. Gomez, B. (1994). "Effects of particle shape and mobility on stable armor development." Water Resources Research, Vol. 30, No. 7, pp. 2229-2239. https://doi.org/10.1029/94WR00770
  17. Kondolf, G.M. (1997). "Hungry water: Effects of dams and gravel mining on river channels." Environmental Management, Vol. 21, No. 4, pp. 533-551. https://doi.org/10.1007/s002679900048
  18. Kondolf, G.M. and Wilcock, P.R. (1996). "The flushing flow problem: Defining and evaluating objectives." Water Resources Research, Vol. 32, pp. 2589-2599. https://doi.org/10.1029/96WR00898
  19. Milhous, R.T. (1982). "Effect of sediment transport and flow regulation on the ecology of gravel-bed rivers." Gravel-bed Rivers edited by R.D hey, J.C.Bathurst and C.R. Thorne, John Wiley & Sons Ltd., pp. 819-842.
  20. Parker, G., and Klingeman, P. (1982). "On why gravel bed streams are paved." Water Resources Research, Vol. 18, No. 5, pp. 1409-1423. https://doi.org/10.1029/WR018i005p01409
  21. Parker, G. and Sutherland, A.J. (1990). "Fuvial armor." Journal of Hydraulic Research, Vol. 28, No. 5, pp. 529-544. https://doi.org/10.1080/00221689009499044
  22. Steiger, J., Gurnell, A.M., and Petts, G.E. (2001). "Sediment deposition along the channel margins of a reach of the middle River Severn, U.K. Regulated Rivers." Research and Management, Vol. 17, pp. 443-495. https://doi.org/10.1002/rrr.644
  23. Vericat, D., Batalla R., and Garci, C. (2006). "Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: The lower Ebro." Geomorphology, Vol. 76, pp. 122-136. https://doi.org/10.1016/j.geomorph.2005.10.005
  24. Wilcock, P., and Southard, J. (1988). "Experimental study of incipient motion in mixed-size sediment." Water Resources Research, Vol. 24, No. 7, pp. 1137-1151. https://doi.org/10.1029/WR024i007p01137
  25. Williams, G.P. and Wolman, M.G. (1984). Downstream Effects of Dams on Alluvial Rivers. United States Geological Survey Professional Paper, 1286.

Cited by

  1. Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam vol.49, pp.8, 2016, https://doi.org/10.3741/JKWRA.2016.49.8.693
  2. Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River vol.45, pp.2, 2012, https://doi.org/10.3741/JKWRA.2012.45.2.151
  3. Estimation of River Dredging Location and Volume Considering Flood Risk Variation Due to Riverbed Change vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.279