DOI QR코드

DOI QR Code

Formation and Thermal Properties of Amorphous Ti40Cu40Ni10Al10 Alloy by Mechanical Alloying

Mechanical Alloying에 의한 비정질 Ti40Cu40Ni10Al10 합금의 형성 및 열적특성

  • Kim, Hyun-Goo (Department of Physics Education, Chosun University)
  • 김현구 (조선대학교 물리교육과)
  • Published : 2009.10.28

Abstract

The amorphization process and the thermal properties of amorphous Ti$_{40}$Cu$_{40}$Ni$_{10}$Al$_{10}$ powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2$\theta$ = 42.4$^{\circ}$) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t$_m$ $\leq$ 3 h), disintegration (3 h < t$_m$ $\leq$ 20 h), and homogenization (20 h < t$_m$ $\leq$ 40 h) (t$_m$: milling time). In the DSC experiment, the peak temperature T$_p$ and crystallization temperature T$_x$ were 466.9$^{\circ}C$ and 444.3$^{\circ}C$, respectively, and the values of T$_p$, and T$_x$ increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T$_p$.

Keywords

References

  1. E. Arzt and Schult: New Materials Mechanical Alloying Techniques, DGM, Germany (1988) 3.
  2. C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough: Appl. Phys. Lett., 43 (1983) 1017. https://doi.org/10.1063/1.94213
  3. D. Roy, D. Chakravarty, R. Mitra and I. Manna: J. Alloys Comp., 460 (2008) 320. https://doi.org/10.1016/j.jallcom.2007.06.053
  4. S. Kumaran, T. Sasikumar, R. Arockiakumar and T. Srinivasa Rao: Powder Tech., 185 (2008) 124. https://doi.org/10.1016/j.powtec.2007.10.006
  5. H. G. Kim and W. N. Myung: Inter. J. of Non-Equilibrium Processing, 10 (1998) 305.
  6. R. W. Cahn, P. Haasen and E. J. Kramer: Mater. Sci. and Tech., VCH, Weinheim (1991) 195.
  7. H. G. Kim, J. Y. Park, S. Yamamuro, K. Sumiyama and K. Suzuki: Mater. Sci. Eng. A, 217/218 (1996) 269. https://doi.org/10.1016/S0921-5093(96)10347-6
  8. C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough: Appl. Phy. Lett., 43 (1973) 1017. https://doi.org/10.1063/1.94213
  9. R. B. Schwartz, R. R. Petrich and L. K. Saw: J. Non- Cryst. Solids, 76 (1985) 281. https://doi.org/10.1016/0022-3093(85)90005-5
  10. N. Igata, N. Urahashi, M. Sasaki and Y. Kogo: Mater. Sci. Eng. A, 370 (2004) 560. https://doi.org/10.1016/j.msea.2003.08.101
  11. R. Sundaresan, A. G. Jackson, S. Krishnamurthy and F. H. Froes: Mater. Sci. Eng., 97 (1988) 115. https://doi.org/10.1016/0025-5416(88)90023-7
  12. C. N. Saikrishna, K. V. Ramaiah and S. K. Bhaumik: Mater. Sci. Eng. A, 428 (2006) 217. https://doi.org/10.1016/j.msea.2006.05.008
  13. B. S. Murty, S. Ranganathan and M. Mohan Rao: Mater. Sci. Eng. A, 149 (1992) 231. https://doi.org/10.1016/0921-5093(92)90384-D
  14. T. Zhang, A. Inoue and T. Masumoto: Mater. Sci. Eng. A, 181/182 (1994) 1423. https://doi.org/10.1016/0921-5093(94)90877-X
  15. A. Inoue, N. Nishiyama, K. Amiya, T. Zhang and T. Masumoto: Mater. Lett., 19 (1994)131. https://doi.org/10.1016/0167-577X(94)90057-4
  16. T. Zhang and A. Inoue: Mater. Trans. JIM, 39 (1998) 1001. https://doi.org/10.2320/matertrans1989.39.1001
  17. K. Amiya, N. Nishiyama, A. Inoue and T. Masumoto: Mater. Sci. Eng. A, 179/180 (1994) 692. https://doi.org/10.1016/0921-5093(94)90294-1
  18. H. G. Kim: SAEMULLI, 57 (2008) 427.
  19. G. K. Williamson and W. H. Hall: Acta Met., 1 (1953) 22. https://doi.org/10.1016/0001-6160(53)90006-6
  20. M. E. Rabanal, A. Várez, B. Levenfeld and J. M. Torralba: J. Mater. Process. Technol., 143 (2003) 470. https://doi.org/10.1016/S0924-0136(03)00464-3
  21. W. H. Hall: Proc. Phys. A, 62 (1949) 741. https://doi.org/10.1088/0370-1298/62/11/110
  22. B. D. Cullity: Elements of X-ray diffraction, Addison-Wesley (1978) 284.
  23. H. E. Kissinger: Anal.Chem., 29 (1957) 1702. https://doi.org/10.1021/ac60131a045