DOI QR코드

DOI QR Code

ON REES MATRIX REPRESENTATIONS OF ABUNDANT SEMIGROUPS WITH ADEQUATE TRANSVERSALS

  • Gao, Zhen Lin (SCIENCE COLLEGE OF UNIVERSITY OF SHANGHAI FOR SCIENCE AND TECHNOLOGY) ;
  • Liu, Xian Ge (SCIENCE COLLEGE OF UNIVERSITY OF SHANGHAI FOR SCIENCE AND TECHNOLOGY) ;
  • Xiang, Yan Jun (SCIENCE COLLEGE OF UNIVERSITY OF SHANGHAI FOR SCIENCE AND TECHNOLOGY) ;
  • Zuo, He Li (SCIENCE COLLEGE OF UNIVERSITY OF SHANGHAI FOR SCIENCE AND TECHNOLOGY)
  • 발행 : 2009.10.31

초록

The concepts of *-relation of a ($\Gamma$-)semigroup and $\bar{\Gamma}$-adequate transversal of a ($\Gamma$-)abundant semigroup are defined in this note. Then we develop a matrix type theory for abundant semigroups. We give some equivalent conditions of a Rees matrix semigroup being abundant and some equivalent conditions of an abundant Rees matrix semigroup having an adequate transversal. Then we obtain some Rees matrix representations for abundant semigroups with adequate transversals by the above theories.

키워드

참고문헌

  1. T. B. Blyth, Almeida, and M. H. Santos, On quasi-orthodox semigroups with inverse transversals, Proc. Edinburgh Math. Soc. 40 (1997), 505–514 https://doi.org/10.1017/S0013091500023981
  2. T. K. Dutta and N. C. Adhikari, On Noetherian $\Gamma$-semigroup, Kyungppok Math. J. 36 (1996), 85–95
  3. A. EI-Qallali, On the construction of a class of abundant semigroups, Acta Math. Hung. 56 (1990), no. 1-2, 77–91 https://doi.org/10.1007/BF01903709
  4. A. EI-Qallali, Abundant semigroups with a multiplicative type A transversal, Semigroup Forum 47 (1993), 327–340 https://doi.org/10.1007/BF02573770
  5. A. EI-Qallali, Quasi-Adequate semigroups II, Semigroup Forum 44 (1992), 273–282 https://doi.org/10.1007/BF02574347
  6. J. Fountain, Abundant semigroups, Proc. Edinburgh Math. Soc. 22 (1979), 103–129
  7. Z. L. Gao, On generalized abundant semigroups, (to appear)
  8. J. M. Howie, An Introduction to Semigroup Theorem, Academic Press, London, 1976
  9. D. B. McAlister and R. B. McFadden, Semigroups with inverse transversals as matrix semigroups, J. Math. Oxford (2) 35 (1984), no. 140, 455–474 https://doi.org/10.1093/qmath/35.4.455
  10. N. K. Saha, The maximum idempotent-separating congruence on an inverse $\Gamma$-semigroups, Kyungpook Math. J. 34 (1994,) no. 1, 59–66
  11. M. K. Sen and N. K. Saha, On $\Gamma$-semigroup I, Bull Calcutta Math. Soc. 78 (1986), 180–186
  12. O. Steinfeld, On a generalization of completely 0-simple semigroups, Acta Sci. Math.(Szeged) 28 (1967), 135–145