DOI QR코드

DOI QR Code

Proton Conducting Membrane Based on Crosslinked Sulfonated Polyimide for Direct Methanol Fuel Cell

  • Sung, Kyung-A (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Wan-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Oh, Keun-Hwan (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choo, Min-Ju (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Jung-Ki (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2009.08.28

Abstract

Crosslinked membrane based on sulfonated polyimide was prepared by the introduction of crosslinkable monomer in polymerization process and crosslinking during membrane casting. Crosslinked membranes showed different properties from non-crosslinked membranes. Crosslinking decreased methanol crossover and therefore unit cell using crosslinked membrane showed increased open circuit voltage, 0.81 V, in comparison with unit cell using noncrosslinked membrane, 0.71 V. In addition, water uptake of crosslinked membrane, 40.5%, was lower than that of non-crosslinked membrane, 57.0%, and this resulted in improved dimensional stability. However, proton conductivity of crosslinked membranes showed rather low relative to non-crosslinked membrane due to reduced water uptake.

Keywords

References

  1. K. A. Mauritz and R. B. Moore, 'State of understanding of Nafion', Chem. Rev., 104, 4535 (2004) https://doi.org/10.1021/cr0207123
  2. Y. Yin, O. Yamada, K. Tanaka, and K.I. Okamoto, 'On the development of naphthalene-based sulfonated polyimide membranes for fuel cell appllications', Polym. J., 38(3), 197 (2006) https://doi.org/10.1295/polymj.38.197
  3. K. D. Kreuer, 'On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells', J. Membr. Sci., 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  4. L. Li, J. Zhang, and Y. Wang, 'Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell', J. Membr. Sci., 226, 159 (2003) https://doi.org/10.1016/j.memsci.2003.08.018
  5. H. Y. Jung and J. K. Park, 'Long-term performance of DMFC based on the blend membrane of sulfonated poly(ether ether ketone) and poly(vinylidene fluoride)', Int. J. Hydrog. Energy, 24, 3915 (2009) https://doi.org/10.1016/j.ijhydene.2009.02.065
  6. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, 'Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications', J. Membr. Sci., 173, 17 (2000) https://doi.org/10.1016/S0376-7388(00)00345-8
  7. D. Jamroz and Y. Marechal, 'Hydration of sulfonated polyimide membranes. II. Water uptake and hydration mmechanisms of protonated homopolymer and block copolymers', J. Phys. Chem. B, 109(42), 19664 (2005) https://doi.org/10.1021/jp040730j
  8. R. L. Bindu, R. Nair, and K. N. Ninan, 'Phenolic resins with phenyl maleimide functions: Thermal characteristics and laminate composite properties', J. Appl. Polym. Sci., 80(10), 1664 (2001) https://doi.org/10.1002/app.1261
  9. R. U. Jeng, C. C. Chang, C. P. Chen, C. T. Chen, and W. C. Su, 'Thermally stable crosslinked NLO materials based on maleimides', Polymer, 44(1), 143 (2003) https://doi.org/10.1016/S0032-3861(02)00730-9
  10. I. E. Serhatli, Y. Yagci, E. Hattemer, R. Zentel, E. Schm$\ddot{a}$lzlin, S. Hohenadl, C. Br$\ddot{a}$uchle, and K. Meerholz, 'Crosslinkable maleimide copolymers for stable NLO properties', J. Polym. Sci.: Part A: Polym. Chem., 39(10), 1589 (2001) https://doi.org/10.1002/pola.1135
  11. H. C. Liou, S. H. Paul, and B. Tung, 'Structure-property correlation for thin films of semi-interpenetrating polyimide networks. I. Miscibility, curing, and morphology studies', J. Appl. Polym. Sci., 70(2), 261 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981010)70:2<261::AID-APP6>3.0.CO;2-S
  12. C. Genius, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, and M. Pineri, 'Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium', Polymer, 42(12), 5097 (2001) https://doi.org/10.1016/S0032-3861(00)00645-5
  13. J. Gang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, and K. Okamoto, 'Novel sulfonated polyimides as polyelectrolytes for fuel cell aapplication. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid', Macromolecules, 35(24), 9022 (2001) https://doi.org/10.1021/ma020005b

Cited by

  1. Development of methanol–air fuel cells with membrane materials based on new sulfonated polyheteroarylenes vol.52, pp.6, 2016, https://doi.org/10.1134/S1023193516060100
  2. Review of Advanced Materials for Proton Exchange Membrane Fuel Cells vol.28, pp.12, 2014, https://doi.org/10.1021/ef501977k
  3. Functionalized Bentonite clay-sPEEK based composite membranes for direct methanol fuel cells vol.135, 2014, https://doi.org/10.1016/j.electacta.2014.04.180
  4. Synthesis and characterization of benzoxazine-containing, crosslinkable, and sulfonated polymer through Diels–Alder reaction for direct methanol fuel cells vol.54, pp.8, 2013, https://doi.org/10.1016/j.polymer.2013.02.037