Abstract
Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.
비전기반 인간컴퓨터 상호작용은 컴퓨터와 인간의 상호소통을 자연스럽게 제공하는 측면에서 과학과 산업분야에서 주목받는 연구 분야이다. 그러한 측면에서 얼굴표정인식에 의한 인간의 심리적 상태를 추론하는 기술은 중요한 이슈이다. 본 연구에서는 감성인식 HMM 모델과 광류에 기반한 얼굴 움직임 추적 방법을 이용하여 동영상으로부터 얼굴표정을 인식하는 새로운 방법을 제시하였다. 특히, 기존의 감성상태 변환을 설명하는 HMM 모델은 특정 표정상태 간의 전환 시 항상 중립 상태를 거치도록 설계되어 있다. 그러나 본 연구에서는 기존의 표정상태 전환 모델에 중간상태를 거치는 과정 없이 특정 표정 상태간의 변환이 가능한 확장된 HMM 모델을 제시한다. 동영상으로부터 얼굴의 특성정보를 추출하기 위하여 탬플릿 매칭과 광류방법을 적용하였다. 광류에 의해 추적된 얼굴의 표정특성 정보는 얼굴표정인식을 위한 HMM의 매개변수 정보로 사용된다. 실험을 통하여 제안된 얼굴표정인식 방법이 실시간 얼굴 표정인식에 효과적임을 입증하였다.